Skip to main content
Log in

Microscale Experiments at Elevated Temperatures Evaluated with Digital Image Correlation

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

The methods of uniform heating and resistive (Joule) heating for microscale freestanding surface-micromachined thin metal film specimens were evaluated by a combination of full-field strain measurements by optical microscopy/Digital Image Correlation (DIC) and microscopic infrared (IR) imaging. The efficacy of each method was qualitatively and quantitatively evaluated with the aid of strain fields and IR-obtained temperature distributions along 850 nm thick freestanding microscale specimens subjected to uniaxial tension while heated by each method. The strain and temperature fields were quite uniform in experiments carried out with uniform specimen heating except for minor end-effects at the specimen grips. However, the resistively heated specimens showed highly uneven temperature distribution varying by 50°C along the 1,000 μm specimen gauge length. This high temperature gradient resulted in strain localization and 40% reduction in yield and ultimate tensile strengths of resistively heated specimens compared to the uniformly heated ones. Therefore, it is concluded that resistive heating is not a reliable method for conducting microscale temperature experiments with metallic films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part I Acta Materialia 51(7):2067–2078

    Article  Google Scholar 

  2. Emery RD, Povirk GL (2003) Tensile behavior of free-standing gold films. Part II Acta Materialia 51(7):2079–2087

    Article  Google Scholar 

  3. Espinosa HD, Prorok BC (2003) Size effects on the mechanical behavior of gold thin films. J Mater Sci 38(20):4125–4128

    Article  Google Scholar 

  4. Stanec R, Smith CH III, Chasiotis I, Barker NS (2007) Realization of low-stress Au cantilever beams. J Micromech Microeng 17:N7–N10

    Article  Google Scholar 

  5. Chasiotis I, Bateson C, Timpano K, McCarty A, Barker NS, Stanec J (2007) Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515:3183–3189

    Article  Google Scholar 

  6. Jonnalagadda K, Chasiotis I, Yagnamurthy S, Lambros J, Pulskamp J, Polcawich R, Dubey M (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35

    Article  Google Scholar 

  7. Jonnalagadda K, Karanjgaokar N, Chasiotis I, Chee J, Mahmood A, Peroulis D (2010) Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater 58(14):4674–4684

    Article  Google Scholar 

  8. Jansen F, MacHonkin MA, Palmieri N, Kuhman D (1987) Thermal expansion and elastic properties of plasma-deposited amorphous silicon and silicon oxide films. Appl Phys Lett 50(16):1059–1061

    Article  Google Scholar 

  9. Tada H, Kumpel AE, Lathrop RE, Slanina JB, Nieva P, Zavracky P, Miaoulis IN, Wong PY (2000) Thermal expansion coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Appl Phys 87(9):4189–4193

    Article  Google Scholar 

  10. Kahn H, Ballarini R, Heuer AH (2002) Thermal expansion of low-pressure chemical vapor deposition polysilicon films. J Mater Res 17(7):1855–1862

    Article  Google Scholar 

  11. Chae J-H, Lee J-Y, Kang S-W (1999) Measurement of thermal expansion coefficient of poly-Si using microgauge sensors. Sens Actuators, A 75(3):222–229

    Article  Google Scholar 

  12. Gruber PA, Olliges S, Arzt E, Spolenak R (2008) Temperature dependence of mechanical properties in ultrathin Au films with and without passivation. J Mater Res 23(9):2406–2419

    Article  Google Scholar 

  13. Volinsky AA, Moody NR, Gerberich WW (2004) Nanoindentation of Au and Pt/Cu thin films at elevated temperatures. J Mater Res 19(9):2650–2657

    Article  Google Scholar 

  14. Smith JF, Zheng S (2000) High temperature nanoscale mechanical property measurements. Surf Eng 16(2):143–146

    Article  Google Scholar 

  15. Emery R, Simons C, Mazin B, Povirk GL (1998) High temperature tensile behavior of free-standing gold films. Mater Res Soc Symp Proc 505:57–62

    Google Scholar 

  16. Oh C-S, Coles G, Sharpe WN Jr (2002) High temperature behavior of polysilicon. Mater Res Soc Symp Proc 741:53–58

    Google Scholar 

  17. Oh C-S, Sharpe WN Jr (2004) Techniques for measuring thermal expansion and creep of polysilicon. Sens Actuators, A 112(1):66–73

    Article  Google Scholar 

  18. Zupan M, Hayden MJ, Boehlert CJ, Hemker KJ (2001) Development of high-temperature microsample testing. Exp Mech 41(3):242–247

    Article  Google Scholar 

  19. Zupan M, Hemker KJ (2001) High temperature microsample tensile testing of γ-TiAl. Mater Sci Eng, A 319–321:810–814

    Google Scholar 

  20. Haque MA, Saif MTA (2005) Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484(1–2):364–368

    Article  Google Scholar 

  21. Kalkman AJ, Verbruggen AH, Janssen GCAM (2003) High-temperature bulge-test setup for mechanical testing of free-standing thin films. Rev Sci Instrum 74(3):1383–1385

    Article  Google Scholar 

  22. Teh KS, Lin L (1999) Time-dependent buckling phenomena of polysilicon micro beams. Microelectron J 30(11):1169–1172

    Article  Google Scholar 

  23. Brotzen FR, Rosenmayer CT, Cofer CG, Gale RJ (1990) Creep of thin metallic films. Vacuum 41(4–6):1287–1290

    Article  Google Scholar 

  24. Hyun S, Brown WL, Vinci RP (2003) Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl Phys Lett 83(21):4411–4413

    Article  Google Scholar 

  25. Mönig R, Keller RR, Volkert CA (2004) Thermal fatigue testing of thin metal films. Rev Sci Instrum 75(11):4997–5004

    Article  Google Scholar 

  26. Cho SW, Chasiotis I (2007) Elastic properties and representative volume element of polycrystalline silicon for MEMS. Exp Mech 47(1):37–49

    Article  Google Scholar 

  27. Kumar KS, Suresh S, Chisholm MF, Horton JA, Wang P (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405

    Article  Google Scholar 

Download references

Acknowledgments

The UIUC authors acknowledge the support by the National Science Foundation under Grants CMS-0555787 and CMMI-0927149-ARRA while Prof. C.-S. Oh acknowledges the support by a grant from the Center for Nanoscale Mechatronics & Manufacturing, a 21st Century Frontier Research Program, which was supported by MEST, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Chasiotis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karanjgaokar, N.J., Oh, CS. & Chasiotis, I. Microscale Experiments at Elevated Temperatures Evaluated with Digital Image Correlation. Exp Mech 51, 609–618 (2011). https://doi.org/10.1007/s11340-010-9439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-010-9439-y

Keywords

Navigation