Skip to main content
Log in

Crack propagation and mechanical properties of electrodeposited nickel with bimodal microstructures in the nanocrystalline and ultrafine grained regime

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The article focuses on the fatigue performance after a moderate heat treatment of nanocrystalline (nc) nickel, which leads to the formation of a bimodal microstructure in the nc to ultrafine grained (ufg) regime. Electrodeposition was used to produce nc macro nickel samples with grain sizes of about 40 nm for mechanical testing. The thermal stability of the material as well as the influence on the mechanical properties and the fatigue crack propagation behavior was investigated. The results of tensile and fatigue tests are discussed in respect to the chosen production method and boundary conditions. In this context, the influence of the bath additives used during the plating process was investigated and rated as the major challenge for a further improvement of the thermal stability and mechanical properties of the material. Finally, a co-deposition of nickel and metal oxides with enhanced thermal stability is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. U. Erb: Electrodeposited nanocrystals: Synthesis, properties and industrial applications. Nanostruct. Mater. 6 (5–8), 533 (1995).

    Article  Google Scholar 

  2. F. Ebrahimi, G. Bourne, M. Kelly, and T. Matthews: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostruct. Mater. 11 (3), 343 (1999).

    Article  CAS  Google Scholar 

  3. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  4. Y.F. Shen, W.Y. Xue, Y.D. Wang, Z.Y. Liu, and L. Zuo: Mechanical properties of nanocrystalline nickel films deposited by pulse plating. Surf. Coat. Technol. 202 (21), 5140 (2008).

    Article  CAS  Google Scholar 

  5. B. Yang, H. Vehoff, and R. Pippan: Overview of the grain size effects on the mechanical and deformation behaviour of electrodeposited nanocrystalline nickel-from nanoindentation to high pressure torsion. Mater. Sci. Forum 633–634 (1), 85 (2010).

    Google Scholar 

  6. E.N. Hahn and M.A. Meyers: Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng., A 646, 101 (2015).

    Article  CAS  Google Scholar 

  7. W. Johnson, J. Doherty, B. Kear, and A. Giamei: Confirmation of sulfur embrittlement in nickel alloys. Scr. Metall. 8, 971–974 (1974).

    Article  CAS  Google Scholar 

  8. C. Briant: Grain boundary segregation of sulfur in iron. Acta Metall. 33, 1241–1246 (1985).

    Article  CAS  Google Scholar 

  9. Á. Cziráki, I. Gerőcs, E. Tóth-Kádár, and I. Bakonyi: TEM and XRD study of the microstructure of nanocrystalline Ni and Cu prepared by severe plastic deformation and electrodeposition. Nanostruct. Mater. 6 (5–8), 547 (1995).

    Article  Google Scholar 

  10. T. Leitner, A. Hohenwarter, and R. Pippan: Revisiting fatigue crack growth in various grain size regimes of Ni. Mater. Sci. Eng., A 646, 294 (2015).

    Article  CAS  Google Scholar 

  11. L. Oniciu and L. Mureşan: Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21 (7), 565 (1991).

    Article  CAS  Google Scholar 

  12. T. Osaka: Effects of saccharin and thiourea on sulfur inclusion and coercivity of electroplated soft magnetic CoNiFe film. J. Electrochem. Soc. 146 (9), 3295 (1999).

    Article  CAS  Google Scholar 

  13. U. Klement, U. Erb, A. El-Sherik, and K. Aust: Thermal stability of nanocrystalline Ni. Sci. Eng. A 203, 177–186 (1995).

    Article  Google Scholar 

  14. V.L. Tellkamp, E.J. Lavernia, and A. Melmed: Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy. Metall. Mater. Trans. A 32 (9), 2335 (2001).

    Article  Google Scholar 

  15. H. Hosseini-Toudeshky and M. Jamalian: Simulation of micromechanical damage to obtain mechanical properties of bimodal Al using XFEM. Mech. Mater. 89, 229–240 (2015).

    Article  Google Scholar 

  16. H.W. Höppel, M. Korn, R. Lapovok, and H. Mughrabi: Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties. J. Phys.: Conf. Ser. 240, 12147 (2010).

    Google Scholar 

  17. Y.G. Liu, X.D. Mi, and S.F. Tian: Effect of grain size on the fracture toughness of bimodal nanocrystalline materials. Adv. Mater. Res. 936, 400 (2014).

    Article  Google Scholar 

  18. S. Kikuchi, Y. Hayami, T. Ishiguri, B. Guennec, A. Ueno, M. Ota, and K. Ameyama: Effect of bimodal grain size distribution on fatigue properties of Ti–6Al–4V alloy with harmonic structure under four-point bending. Mater. Sci. Eng., A 687, 269–275 (2017).

    Article  CAS  Google Scholar 

  19. M. Ames, J. Markmann, R. Karos, A. Michels, and A. Tschöpe: Unraveling the nature of room temperature grain growth in nanocrystalline materials. Acta Mater. 56, 4255–4266 (2008).

    Article  CAS  Google Scholar 

  20. D. Molodov and L. Shvindlerman: Impact of grain boundary character on grain boundary kinetics. Z. Metallkd. 94, 1117–1126 (2003).

    Article  CAS  Google Scholar 

  21. R. Kirchheim: Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55 (15), 5129 (2007).

    Article  CAS  Google Scholar 

  22. P. Choi, M. Da Silva, U. Klement, T. Al-Kassab, and R. Kirchheim: Thermal stability of electrodeposited nanocrystalline Co–1.1 at.% P. Acta Mater. 53 (16), 4473 (2005).

    Article  CAS  Google Scholar 

  23. B. Färber, E. Cadel, A. Menand, G. Schmitz, and R. Kirchheim: Phosphorus segregation in nanocrystalline Ni–3.6 at.% P alloy investigated with the tomographic atom probe (TAP). Acta Mater. 48 (3), 789 (2000).

    Article  Google Scholar 

  24. F. Liu and R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation. J. Cryst. Growth 264 (1–3), 385 (2004).

    Article  CAS  Google Scholar 

  25. A. Wimmer, M. Smolka, W. Heinz, T. Detzel, W. Robl, C. Motz, V. Eyert, E. Wimmer, F. Jahnel, R. Treichler, and G. Dehm: Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng., A 618, 398 (2014).

    Article  CAS  Google Scholar 

  26. C.E. Krill, III, H. Ehrhardt, and R. Birringer: Thermodynamic stabilization of nanocrystallinity. Z. Metallkd. 96, 1134–1141 (2005).

    Article  CAS  Google Scholar 

  27. A. Rollett, F. Humphreys, G. Rohrer, and M. Hatherly: Recrystallization and related annealing phenomena, 2nd Edition. (Elsevier, Oxford, United Kingdom, 2004).

    Google Scholar 

  28. C.C. Koch, R.O. Scattergood, M. Saber, and H. Kotan: High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies. J. Mater. Res. 28, 1785–1791 (2013).

    Article  CAS  Google Scholar 

  29. D. Morris and M. Morris: Microstructure and strength of nanocrystalline copper alloy prepared by mechanical alloying. Acta Metall. Mater. 39, 1763–1770 (1991).

    Article  CAS  Google Scholar 

  30. A. Bachmaier, A. Hohenwarter, and R. Pippan: New procedure to generate stable nanocrystallites by severe plastic deformation. Scr. Mater. 61, 1016–1019 (2009).

    Article  CAS  Google Scholar 

  31. A. Bachmaier and R. Pippan: Generation of metallic nanocomposites by severe plastic deformation. Int. Mater. Rev. 58 (1), 41 (2013).

    Article  CAS  Google Scholar 

  32. J. Cahn: The impurity-drag effect in grain boundary motion. Acta Metall. 10, 789–798 (1962).

    Article  CAS  Google Scholar 

  33. K. Lücke and H. Stüwe: On the theory of impurity controlled grain boundary motion. Acta Metall. 19, 1087–1099 (1971).

    Article  Google Scholar 

  34. R. Choo, J. Toguri, A. El-Sherik, and U. Erb: Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating. J. Appl. Electrochem. 25, 384–403 (1995).

    Article  CAS  Google Scholar 

  35. H. Natter and M. Schmelzer: Nanocrystalline nickel and nickel–copper alloys: Synthesis, characterization, and thermal stability. J. Mater. 13, 1186–1197 (1998).

    CAS  Google Scholar 

  36. H. Natter and R. Hempelmann: Nanocrystalline copper by pulsed electrodeposition: The effects of organic additives, bath temperature, and pH. J. Phys. Chem. 100 (50), 19525 (1996).

    Article  CAS  Google Scholar 

  37. U. Klement, C. Oikonomou, and R. Chulist: Influence of additives on texture development of submicro-and nanocrystalline nickel. Mater. Sci. Forum 702, 928–931 (2012).

    Google Scholar 

  38. M. Stangl, J. Acker, S. Oswald, M. Uhlemann, T. Gemming, S. Baunack, and K. Wetzig: Incorporation of sulfur, chlorine, and carbon into electroplated Cu thin films. Microelectron. Eng. 84 (1), 54 (2007).

    Article  CAS  Google Scholar 

  39. L. Oniciu and L. Mureşan: Some fundamental aspects of levelling and brightening in metal electrodeposition. J. Appl. Electrochem. 21, 565–574 (1991).

    Article  CAS  Google Scholar 

  40. G. Hibbard, K. Aust, G. Palumbo, and U. Erb: Thermal stability of electrodeposited nanocrystalline cobalt. Scr. Mater. 44 (3) (2001).

  41. T. Qian, I. Karaman, and M. Marx: Mechanical properties of nanocrystalline and ultrafine-grained nickel with bimodal microstructure. Adv. Eng. Mater. 16 (11), 1323 (2014).

    Article  CAS  Google Scholar 

  42. G. Aronson and R. Ritchie: Optimization of the electrical potential technique for crack growth monitoring in compact test pieces using finite element analysis. J. Test. Eval. 7, 208–215 (1979).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank the DFG for their financial support of the project MA 3322/3-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Rathmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathmann, D., Marx, M. & Motz, C. Crack propagation and mechanical properties of electrodeposited nickel with bimodal microstructures in the nanocrystalline and ultrafine grained regime. Journal of Materials Research 32, 4573–4582 (2017). https://doi.org/10.1557/jmr.2017.353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.353

Navigation