Skip to main content
Log in

Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A comparison between the experimental process parameters employed for the pulse plating of nanocrystalline nickel and the solution-side mass transfer and electrokinetic characteristics has been carried out. It was found that the experimental process parameters (on-time, off time and cathodic pulse current density) for cathodic rectangular pulses are consistent and within the physical constraints (limiting pulse current density, transition time, capacitance effects and integrity of the waveform) predicted from theory with the adopted postulates. This theoretical analysis also provides a means of predicting the behaviour of the process subject to a change in the system, kinetic and process parameters. The product constraints (current distribution, nucleation rate and grain size), defined as the experimental conditions under which nanocrystalline grains are produced, were inferred from electrocrystallization theory. High negative overpotential, high adion population and low adion surface mobility are prerequisites for massive nucleation rates and reduced grain growth; conditions ideal for nanograin production. Pulse plating can satisfy the former two requirements but published calculations show that surface mobility is not rate-limiting under high negative overpotentials for nickel. Inhibitors are required to reduce surface mobility and this is consistent with experimental findings. Sensitivity analysis on the conditions which reduce the total overpotential (thereby providing more energy for the formation of new nucleation sites) are also carried out. The following lists the effect on the overpotential in decreasing order: cathodic duty cycle, charge transfer coefficient, Nernst diffusion thickness, diffusion coefficient, kinetic parameter (γ) and exchange current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant employed in Fig. 8, (αnFi0)/(RT e C a)(s−1)

B :

constant in Equation 38 (V2)

C :

cation concentration (molcm−3)

C a :

capacitance of double layer (µFcm−2)

C s :

cation surface concentration (molcm−3)

C *s :

dimensionless cation surface concentration, C s/C (−)

C :

cation bulk concentration (molcm−3)

D :

diffusion coefficient of cation (cm2s−1)

ΔE :

total applied potential (V)

ΔE 0 :

standard cell potential (V)

F :

Faraday constant (Cmol−1)

ℱ:

function defined in Appendix C(−)

Fr :

frequency of waveform (Hz)

f i,p :

function defined in Appendix C for pth period (−)

f i,∞ :

function defined in Appendix C for p → ∞ period (−)

G j :

function defined in Appendix B (−)

gi :

function defined in Appendix B (−)

i :

current density (Acm¨)

i ac :

unsteady fluctuating a.c. current density (Acm−2)

i c :

capacitance current density (Acm−2)

i dc :

steady time-averaged d.c. current density (Acm−2)

i F :

Faradaic current density (Acm−2)

i lim :

limiting d.c. current density (Acm−2)

i 0 :

exchange current density (Acm−2)

i PL :

limiting pulse current density, i 1{Cs = 0 at t = (p − 1) T + t 1(Acm−2)

i 1 :

cathodic pulse current density (Acm−2)

i 2 :

relaxed or low current pulse current density (Acm−2)

iin:

anodic pulse current density (Acm−2)

i * :

dimensionless current density, i/|i lim| (−)

i *0 :

dimensionless exchange current density, i dc/|i lim| (−)

i *dc :

dimensionless steady time-averaged d.c. current density, i dc/|i lim| (−)

i *PL :

dimensionless limiting cathodic pulse current density, i PL/|i lim| (−)

i *PL,p :

dimensionless limiting pulse current density at pth period, i 1(C s = 0)/|i lim| (−)

i *PL,∞ :

dimensionless limiting pulse current density for p → ∞, i 1(C s = 0)/|i lim| (−)

i *1 :

dimensionless cathodic pulse current density, i 1/|i lim| (−)

References

  1. H. Gleiter, Prog. Mat. Sci. 33 (1989) 223.

    Google Scholar 

  2. G. Herzer, Mat. Sci. Eng. A133 (1991) 1.

    Google Scholar 

  3. S. J. Thorpe, B. Ramaswami and K. T. Aust, J. Electrochem. Soc. 135 (1988) 2162.

    Google Scholar 

  4. K. Boylan, D. Ostrander, U. Erb, G. Palumbo and K. T. Aust, Scripta Metall. Mater. 25 (1991) 2711.

    Google Scholar 

  5. R. W. Siegel and H. Hahn, ‘Nanophase Materials: Current Trends in Physics of Materials’ (edited by M. Youssef), World Scientific Publications, Singapore (1988).

    Google Scholar 

  6. J. Karch, R. Birringer and H. Gleiter, Nature 330 (1987) 556.

    Google Scholar 

  7. G. McMahon and U. Erb, J. Mater. Sci. Lett. 8 (1989) 865.

    Google Scholar 

  8. A. M. EI-Sherik and U. Erb, ‘Production of nanocrystalline metals’, US Patent Allowed 07/983205 (1992).

  9. M. Cherkaoui, E. Chassaing and K. Vu Quang, Surf. Coat. Technol. 34 (1988) 242.

    Google Scholar 

  10. N. Ibl, Surf. Technol. 10 (1980) 81.

    Google Scholar 

  11. K. I. Popov, M. D. Maksimovic, B. M. Ocokoljie and B. J. Lazarevic, ibid. 11 (1980) 99.

    Google Scholar 

  12. K. Hosokawa, J. C. Puippe and N. Ibl, Proceedings of the World Congress on Met. Finish, 10th, Interfinish 80, Met. Soc. of Japan, Tokyo (1980) pp. 59–62.

    Google Scholar 

  13. N. Ibl, J. Cl. Puippe and H. Angerer, Surf. Technol. 6 (1978) 287.

    Google Scholar 

  14. D. T. Chin, R. Sethi and J. McBreen, J. Electrochem. Soc. 129 (1982) 2677.

    Google Scholar 

  15. J. Cl. Puippe and N. Ibl, Plating Surf. Finish. 67 (1980) 68.

    Google Scholar 

  16. M. G. Pavlovic, M. D. Maksimovic and K. I. Popov, J. Appl. Electrochem. 8 (1978) 61.

    Google Scholar 

  17. O. Chène and D. Landolt, ibid. 19 (1989) 188.

    Google Scholar 

  18. J. O'M. Bockris and A. K. N. Reddy, ‘Modern Electrochemistry’, vol. 2, Plenum Press, New York (1970) pp. 1173–1231.

    Google Scholar 

  19. J. O'M. Bockris and A. Damjanovic, The Mechanism of the Electrodeposition of Metals, in ‘Modern Aspects of Electrochemistry’, vol. 3, (edited by J. O'M. Bockris and B. E. Conway), Butterworth, London (1964) pp. 224–346.

    Google Scholar 

  20. J. O'M. Bockris and G. A. Razumney, ‘Fundamental Aspects of Electrocrystallization’, Plenum Press, New York (1967) pp. 27–38.

    Google Scholar 

  21. D.-T. Chin and S. Venkatesh, J. Electrochem. Soc. 128 (1981) 1439.

    Google Scholar 

  22. G. Holmbom and B. E. Jacobson, ibid. 135 (1988) 2720.

    Google Scholar 

  23. J. O'M. Bockris and B. E. Conway (eds), op. cit. [19], p. 279.

  24. M. Y. Abyaneh and M. Fleischmann, J. Electrochem. Soc. 139 (1991) 2491.

    Google Scholar 

  25. E. B. Budevski, Deposition and Dissolution of Metals and Alloys. Part A: Electrocrystallization, in ‘Comprehensive Treatise of Electrochemistry’, vol. 7, (edited by B. E. Conway, J. O'M. Bockris, E. Yeager, S. U. M. Khan and R. E. White), Plenum Press, New York (1983) pp. 399–450.

    Google Scholar 

  26. W. Kim and R. Weil, Surf. Coat. Technol. 38 (1989) 289.

    Google Scholar 

  27. W. Kossel, Nachr. Ges. Wiss. Göttinger, Math. Physik. Kl. (1929) 135.

  28. I. N. Stranski, Z. Physik. Chem. Leipzig 136 (1928) 259.

    Google Scholar 

  29. D. L. Rehrig, Plating 61 (1974) 43.

    Google Scholar 

  30. N. V. Parthasaradhy, ‘Practical Electroplating Handbook’, Prentice Hall, Englewood Cliffs, NJ (1989).

    Google Scholar 

  31. D. T. Chin, J. Electrochem. Soc. 130 (1983) 1657.

    Google Scholar 

  32. Yu G. Silver, Zh. Fiz. Khim. 34 (1960) 577.

    Google Scholar 

  33. J. M. Hale, J. Electroanal. Chem. 6 (1963) 187.

    Google Scholar 

  34. N. Osero, Pulse plating equipment, in ‘Theory and Practice of Pulse Plating’, (edited by J. Cl. Puippe and F. Leaman), AESF, Orlando, FA (1986) pp. 221–228.

    Google Scholar 

  35. T. R. Rosebrugh and W. L. Miller, J. Physical Chem. 14 (1910) 816.

    Google Scholar 

  36. D. Landolt, Mass transport in pulse plating, in ‘Theory and Practice of Pulse Plating’, (edited by J. Cl. Puippe and F. Leaman), AESF, Orlando, Florida (1986) pp. 55–71.

    Google Scholar 

  37. S. Venkatesh, M. Meyyappan and D.-T. Chin, J. Colloid & Interf. Sci. 85 (1982) 216.

    Google Scholar 

  38. S. Sethi and D.-T. Chin, J. Electroanal. Chem. 160 (1984) 79.

    Google Scholar 

  39. J. Cl. Puippe and N. Ibl, J. Appl. Electrochem. 10 (1980) 775.

    Google Scholar 

  40. J. Cl. Puippe, Influence of charge and discharge of double layer in pulse plating, in ‘Theory and Practice of Pulse Plating’, (edited by J. Cl. Puippe and F. Leaman), AESF, Orlando, FA (1986) pp. 41–54.

    Google Scholar 

  41. C. M. Gilmore and J. A. Sprague, ‘Molecular dynamics simulations of thin film nanostructures’, 1993 TMS AIME Annual General Meeting, Denver, paper in session on nanocrystalline materials.

  42. J. Cl. Puippe, Qualitative approach to pulse plating, in ‘Theory and Practice of Pulse Plating’, (edited by J. Cl. Puippe and F. Leaman), AESF, Orlando, FA (1986) pp. 1–15.

    Google Scholar 

  43. M. Fleischmann and H. R. Thirsk, Metal deposition and electrocrystallization, in ‘Advances in Electrochemistry and Electrochemical Engineering’, (edited by P. Delahay and C. W. Tobias), Interscience, New York (1963) pp. 123–210.

    Google Scholar 

  44. J. O'M. Bockris and G. A. Razumney, op. cit. [20], pp. 51–53.

  45. Idem, op. cit. [20], p. 38.

  46. B. E. Conway and J. O'M. Bockris, Electrochim. Acta 3 (1961) 340.

    Google Scholar 

  47. O. Dossenbach, Current distribution in pulse plating, in ‘Theory and Practice of Pulse Plating’, (edited by J. Cl. Puippe and F. Leaman), AESF, Orlando, FA (1986) pp.73–92.

    Google Scholar 

  48. D.-T. Chin and S. Venkatesh, J. Electrochem. Soc. 128 (1981) 1439.

    Google Scholar 

  49. E. B. Budevski, op. cit. [25], p. 441.

  50. A. J. Arvia and D. Posadas, Nickel, in ‘Encyclopaedia of Electrochemistry of the Elements’, vol. 3, (edited by A. J. Bard), Marcel and Dekker, New York (1975) pp. 211–421.

    Google Scholar 

  51. N. Tanaka and R. Tamamushi, Electrochim. Acta 9 (1964) 963.

    Google Scholar 

  52. J. Y. Wang, D. Balamurugan and D.-T. Chin, J. Appl. Electrochem. 22 (1992) 240.

    Google Scholar 

  53. S.-C. Yen and T. W. Chapman, Chem. Eng. Comm. 38 (1985) 159.

    Google Scholar 

  54. M. Datta and D. Landolt, Electrochim. Acta 26 (1981) 899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choo, R.T.C., Toguri, J.M., El-Sherik, A.M. et al. Mass transfer and electrocrystallization analyses of nanocrystalline nickel production by pulse plating. J Appl Electrochem 25, 384–403 (1995). https://doi.org/10.1007/BF00249659

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00249659

Keywords

Navigation