Skip to main content
Log in

Mechanical and fracture behaviour of the three-scale hierarchy structure in As-deposited and annealed nanocrystalline electrodeposited Ni–Fe alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The growing interest in nanocrystalline (nc) materials is driven by their outstanding combination of mechanical and functional properties. Electrodeposited nc Ni–Fe alloys have received considerable attention, thanks to their unique strength and to their thermal and magnetic properties. However, the research on the relationship between microstructure, mechanical properties and fracture behaviour, under both As-deposited and annealed conditions, is still rather limited. In this paper, 48 wt% Fe electrodeposited nc Ni–Fe alloy foils were tested, by means of tensile and nanoindentation tests, under both As-deposited and annealed conditions (300–800 °C). High-resolution FESEM images revealed that the As-deposited microstructure consisted of an unforeseen, evident anisotropic nested three-scale hierarchy nc structure, namely from the nanocrystalline (~ 10 nm) to the sub-micron (up to 250 nm) scale, across a mesostructure (155–165 nm), here denoted as the characteristic grain structure. Such a nested nc grain structure of the electrodeposited nc Ni–Fe alloy, which resembles the one of a corncob (corncob-like structure), explained the unique anisotropic mechanical properties of the foils after nanoindentation, tensile and oblique-bending fracture tests. The mechanical properties (i.e. tensile strength, elongation, yield strength and hardness) of the foils annealed up to 320 °C were found to be improved, in comparison with the As-deposited counterparts, whereas those annealed above 320 °C were deteriorated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Torabinejad V, Aliofkhazraei M, Assareh S, Allahyarzadeh MH, Rouhaghdam AS (2017) Electrodeposition of Ni-Fe alloys, composites, and nano coatings—a review. J Alloys Compd 691:841–859

    Article  CAS  Google Scholar 

  2. Mazza E, Abel S, Dual J (1996) Experimental determination of mechanical properties of Ni and Ni–Fe microbars. Microsyst Technol 2(4):197–202

    Article  Google Scholar 

  3. Kurmanaeva L, McCrea J, Jian J, Fiebig J, Wang H, Mukherjee AK, Lavernia EJ (2016) Influence of layer thickness on mechanical properties of multilayered NiFe samples processed by electrodeposition. Mater Des 90:389–395

    Article  CAS  Google Scholar 

  4. Torabinejad V, Aliofkhazraei M, Rouhaghdam AS, Allahyarzadeh MH (2016) Functionally graded coating of Ni–Fe fabricated by pulse electrodeposition. J Mater Eng Perform 25(12):5494–5501

    Article  CAS  Google Scholar 

  5. Hibbard GD, Erb U, Aust KT, Klement U, Palumbo G (2002) Thermal stability of nanostructured electrodeposits. Mater Sci Forum 386:387–396

    Article  Google Scholar 

  6. McCrea JL, Palumbo G, Hibbard GD, Erb U (2003) Properties and applications for electrodeposited nanocrystalline Fe–Ni alloys. Rev Adv Mater Sci 5(3):252–258

    CAS  Google Scholar 

  7. Tabakovic I, Inturi V, Thurn J, Kief M (2010) Properties of Ni1−xFex (0.1 < x < 0.9) and Invar (x = 0.64) alloys obtained by electrodeposition. Electrochim Acta 55(22):6749–6754

    Article  CAS  Google Scholar 

  8. Nagayama T, Yamamoto T, Nakamura T (2016) Thermal expansions and mechanical properties of electrodeposited Fe–Ni alloys in the Invar composition range. Electrochim Acta 205:178–187

    Article  CAS  Google Scholar 

  9. Li H, Jiang F, Ni S, Li L, Sha G, Liao X, Ringer SP, Choo H, Liaw PK, Misra A (2011) Mechanical behaviors of As-deposited and annealed nanostructured Ni–Fe alloys. Scr Mater 65(1):1–4

    Article  CAS  Google Scholar 

  10. Chakraborty S, Settem M, Sant SB (2013) Evolution of texture and nature of grain growth on annealing nanocrystalline Ni and Ni-18.5% Fe in air. Mater Exp 3(2):99–108

    Article  CAS  Google Scholar 

  11. Xue Y, Hillman K, Veazie D (2003) Thermal-mechanical evaluation of plated electro-magnetic NiFe for MEMS generators. In: MRS online proceedings library archive 795, pp 1–6

  12. Ren HR, Guo L, Guo ZC (2017) Effects of annealing temperature on the microstructure and mechanical properties of electrodeposited Ni–Fe alloy foils. High Temp Mater Process (London) 36(3):223–232

    CAS  Google Scholar 

  13. Chang WS, Wei Y, Guo JM, He FJ (2012) Thermal stability of Ni–Fe alloy foils continuously electrodeposited in a fluorborate bath. Open J Met 2(01):18–23

    Article  CAS  Google Scholar 

  14. Li H, Ebrahimi F (2006) Tensile behavior of a nanocrystalline Ni–Fe alloy. Acta Mater 54(10):2877–2886

    Article  CAS  Google Scholar 

  15. Li H, Liaw PK, Choo H, Misra A (2008) Effect of grain orientation on ductility in a nanocrystalline Ni–Fe alloy. Appl Phys Lett 93(5):1–3

    Google Scholar 

  16. Qin XY, Cheong SH, Lee JS (2003) Tensile behavior of nanocrystalline Ni–Fe alloy. Mater Sci Eng A 363(1–2):62–66

    Article  Google Scholar 

  17. Li H, Ebrahimi F (2005) Ductile-to-brittle transition in nanocrystalline metals. Adv Mater 17(16):1969–1972

    Article  CAS  Google Scholar 

  18. Li HQ, Ebrahimi F (2003) An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys. Acta Mater 51(13):3905–3913

    Article  CAS  Google Scholar 

  19. Seo JH, Kim JK, Yim TH, Park YB (2005) Textures and grain growth in nanocrystalline Fe–Ni alloys. Mater Sci Forum 475:3483–3488

    Article  Google Scholar 

  20. Thuvander M, Abraham M, Cerezo A, Smith GDW (2001) Thermal stability of electrodeposited nanocrystalline nickel and iron–nickel alloys. Mater Sci Technol 17(8):961–970

    Article  CAS  Google Scholar 

  21. Seo JH, Kim JK, Park YB (2007) Abnormal grain growth during annealing in nanocrystalline Fe–Ni alloys. Mater Sci Forum 558:1279–1282

    Article  Google Scholar 

  22. Fan GJ, Wang YD, Fu LF, Choo H, Liaw PK, Ren Y, Browning ND (2006) Orientation-dependent grain growth in a bulk nanocrystalline alloy during the uniaxial compressive deformation. Appl Phys Lett 88(17):1–3

    Article  Google Scholar 

  23. Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49(10):3847–3859. https://doi.org/10.1007/s10853-014-8099-1

    Article  CAS  Google Scholar 

  24. Fan GJ, Fu LF, Choo H, Liaw PK, Browning ND (2006) Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater 54(18):4781–4792

    Article  CAS  Google Scholar 

  25. Matsui I, Kawakatsu T, Takigawa Y, Uesugi T, Higashi K (2014) Fabrication of bulk nanocrystalline Fe–Ni alloys with high strength and high ductility by an electrodeposition. Mater Lett 116:71–74

    Article  CAS  Google Scholar 

  26. Cheung C, Djuanda F, Erb U, Palumbo G (1995) Electrodeposition of nanocrystalline Ni–Fe alloys. Nanostruct Mater 5(5):513–523

    Article  CAS  Google Scholar 

  27. Ebrahimi F, Li HQ (2003) Structure and properties of electrodeposited nanocrystalline FCC Ni–Fe alloys. Rev Adv Mater Sci 5(2):134–138

    CAS  Google Scholar 

  28. Monaco L, Avramovic-Cingara G, Palumbo G, Erb U (2018) Corrosion behaviour of electrodeposited nanocrystalline nickel-iron (NiFe) alloys in dilute H2SO4. Corros Sci 130:103–112

    Article  CAS  Google Scholar 

  29. Li H, Ebrahimi F, Choo H, Liaw PK (2006) Grain size dependence of tensile behavior in nanocrystalline Ni–Fe alloys. J Mater Sci 41(22):7636–7642. https://doi.org/10.1007/s10853-006-0856-3

    Article  CAS  Google Scholar 

  30. Martienssen W, Warlimont H (eds) (2006) Springer handbook of condensed matter and materials data. Springer, Berlin

    Google Scholar 

  31. Vinogradov A, Hashimoto S, Kopylov VI (2003) Enhanced strength and fatigue life of ultra-fine grain Fe–36Ni Invar alloy. Mater Sci Eng A 355(1–2):277–285

    Article  Google Scholar 

  32. Schuh CA, Nieh TG, Yamasaki T (2002) Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr Mater 46(10):735–740

    Article  CAS  Google Scholar 

  33. Giallonardo JD, Erb U, Aust KT, Palumbo G (2011) The influence of grain size and texture on the Young’s modulus of nanocrystalline nickel and nickel–iron alloys. Philos Mag 91(36):4594–4605

    Article  CAS  Google Scholar 

  34. Byun MH, Cho JW, Han BS, Kim YK, Song YS (2006) Material characterization of electroplated nanocrystalline nickel–iron alloys for micro electronic mechanical system. Jpn J Appl Phys 45(9R):7084–7090

    Article  CAS  Google Scholar 

  35. Li MA, Zhang L, Li XB, Li ZY, Zhou KC (2015) Fabrication and characterization of electrodeposited nanocrystalline Ni–Fe alloys for NiFe2O4 spinel coatings. Trans Nonferrous Met Soc China 25(1):146–153

    Article  Google Scholar 

  36. Leith SD, Ramli S, Schwartz DT (1999) Characterization of Nix Fe1−x (0.10 < x < 0.95) Electrodeposition from a Family of Sulfamate‐Chloride Electrolytes. J Electrochem Soc 146(4):1431–1435

    Article  CAS  Google Scholar 

  37. Buchheit TE, Goods SH, Kotula PG, Hlava PF (2006) Electrodeposited 80Ni–20Fe (Permalloy) as a structural material for high aspect ratio microfabrication. Mater Sci Eng A 432(1–2):149–157

    Article  Google Scholar 

  38. Wang YM, Ott RT, Van Buuren T, Willey TM, Biener MM, Hamza AV (2012) Controlling factors in tensile deformation of nanocrystalline cobalt and nickel. Phys Rev B 85(1):1–18

    Article  Google Scholar 

  39. Goods SH, Kelly JJ, Talin AA, Michael JR, Watson RM (2006) Electrodeposition of ni from low-temperature sulfamate electrolytes II. Properties and structure of electrodeposits. J Electrochem Soc 153(5):C325–C333

    Article  CAS  Google Scholar 

  40. Huang YY, Zhou YC, Pan Y (2009) Simulation of kinetically limited growth of electrodeposited polycrystalline Ni films. Phys E Low-dimens Syst Nanost 41(9):1673–1678

    Article  CAS  Google Scholar 

  41. Cheng S, Zhao Y, Guo Y, Li Y, Wei Q, Wang X, Ren Y, Liaw PK, Choo H, Lavernia EJ (2009) High plasticity and substantial deformation in nanocrystalline NiFe alloys under dynamic loading. Advanced Materials 21(48):5001–5004

    Article  CAS  Google Scholar 

  42. Huang CH, Jan JR, Shu WY, Wu HM (2001) Study of sulfur embrittlement in electroformed Ni-Re alloy. J Mater Sci 36(18):4385–4391. https://doi.org/10.1023/A:1017962215151

    Article  CAS  Google Scholar 

  43. Ebrahimi F, Li H (2006) Grain growth in electrodeposited nanocrystalline fcc Ni–Fe alloys. Scr Mater 55(3):263–266

    Article  CAS  Google Scholar 

  44. Czerwinski F, Li H, Megret M, Szpunar JA, Clark DG, Erb U (1997) The evolution of texture and grain size during annealing of nanocrystalline Ni-45% Fe electrodeposits. Scr Mater 37(12):1967–1972

    Article  CAS  Google Scholar 

  45. Klement U, da Silva M, Skrotzki W (2008) On the orientations of abnormally grown grains in nanocrystalline Ni and Ni–Fe. J Microsc 230(3):455–463

    Article  CAS  Google Scholar 

  46. Park YB, Park J, Ha CS, Yim TH (2002) Texture evolution during the annealing of nanocrystalline permalloy. Mater Sci Forum 408:919–924

    Article  Google Scholar 

  47. Wang N, Wang Z, Aust KT, Erb U (1997) Isokinetic analysis of nanocrystalline nickel electrodeposits upon annealing. Acta Mater 45(4):1655–1669

    Article  CAS  Google Scholar 

  48. Aleshin AN (2008) Role of grain-boundary diffusion in the grain growth in nanocrystalline nickel. Russ Metall (Metally) 2008(4):286–293

    Article  Google Scholar 

  49. Liu Y, Liu L, Shen B, Hu W (2011) A study of thermal stability in electrodeposited nanocrystalline Fe–Ni invar alloy. Mater Sci Eng A 528(18):5701–5705

    Article  CAS  Google Scholar 

  50. Klement U, Erb U, El-Sherik AM, Aust KT (1995) Thermal stability of nanocrystalline Ni. Mater Sci Eng A 203(1–2):177–186

    Article  Google Scholar 

  51. Lee DN (2007) Changes in lattice constants and orientation of <100> and <111> grains in nanocrystalline Ni and Ni–Fe electrodeposits after annealing. Mater Sci Forum 539:149–154

    Article  Google Scholar 

  52. Lee M, Ahn J, Yim TH (2018) Effects of electroformed Fe–Ni substrate textures on light-trapping in thin film solar cells. Int J Electrochem Sci 13:5612–5619

    Article  CAS  Google Scholar 

  53. Zhang YH, Ding GF, Cai YL, Wang H, Cai B (2006) Electroplating of low stress permalloy for MEMS. Mater Charact 57(2):121–126

    Article  Google Scholar 

  54. Bhandari A, Hearne SJ, Sheldon BW, Soni SK (2009) Microstructural origins of saccharin-induced stress reduction in electrodeposited Ni. J Electrochem Soc 156(8):D279–D282

    Article  CAS  Google Scholar 

  55. Kim SH, Sohn HJ, Joo YC, Kim YW, Yim TH, Lee HY, Kang T (2005) Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt% Ni alloy. Surf Coat Technol 199(1):43–48

    Article  CAS  Google Scholar 

  56. Chaudhari AK, Singh VB (2018) A review of fundamental aspects, characterization and applications of electrodeposited nanocrystalline iron group metals, Ni-Fe alloy and oxide ceramics reinforced nanocomposite coatings. J Alloys Compd 751:194–214

    Article  CAS  Google Scholar 

  57. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  58. Tabor D (1951) The hardness and strength of metals. J Inst Met 79:1–18

    CAS  Google Scholar 

  59. Gorczyca I, Christensen NE, Perlin P, Grzegory I, Jun J, Bockowski M (1991) High pressure phase transition in aluminium nitride. Solid State Commun 79(12):1033–1034

    Article  CAS  Google Scholar 

  60. Grimmett DL, Schwartz M, Nobe K (1993) A comparison of DC and pulsed Fe–Ni alloy deposits. J Electrochem Soc 140(4):973–978

    Article  CAS  Google Scholar 

  61. Vicenzo A (2013) Structure and mechanical properties of electrodeposited nanocrystalline Ni–Fe alloys. J Electrochem Soc 160(11):D570–D577

    Article  CAS  Google Scholar 

  62. Chauhan M, Mohamed FA (2006) Investigation of low temperature thermal stability in bulk nanocrystalline Ni. Mater Sci Eng A 427(1–2):7–15

    Article  Google Scholar 

  63. Li H, Ebrahimi F (2004) Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl Phys Lett 84(21):4307–4309

    Article  CAS  Google Scholar 

  64. Cao ZH, Li PY, Jiang ZH, Meng XK (2011) Rolling deformation induced reduction of rate sensitivity and enhancement of hardness in nanocrystalline NiFe alloys. J Phys D Appl Phys 44(29):34–37

    Article  Google Scholar 

  65. Li L, Ungár T, Wang YD, Fan GJ, Yang YL, Jia N, Ren Y, Tichy G, Lendvai J, Choo H, Liaw PK (2009) Simultaneous reductions of dislocation and twin densities with grain growth during cold rolling in a nanocrystalline Ni–Fe alloy. Scr Mater 60(5):317–332

    Article  CAS  Google Scholar 

  66. Shen TD, Schwarz RB, Feng S, Swadener JG, Huang JY, Tang M, Zhang J, Vogel SC, Zhao Y (2007) Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall-Petch relation. Acta Mater 55(15):5007–5013

    Article  CAS  Google Scholar 

  67. Van Petegem S, Zimmermann J, Brandstetter S, Sauvage X, Legros M, Van Swygenhoven H (2013) Microstructure and deformation mechanisms in nanocrystalline Ni–Fe. Part I. Microstructure. Acta Mater 61(15):5835–5845

    Article  Google Scholar 

  68. Wang YB, Ho JC, Cao Y, Liao XZ, Li HQ, Zhao YH, Zhu YT (2009) Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy. Appl Phys Lett 94(9):1–3

    Google Scholar 

  69. Torrents A, Yang H, Mohamed FA (2010) Effect of annealing on hardness and the modulus of elasticity in bulk nanocrystalline nickel. Metall Mater Trans A 41(3):621–630

    Article  Google Scholar 

  70. Sanders PG, Eastman JA, Weertman JR (1997) Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater 45(10):4019–4025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the R&D Convergence Programme funded by the National Research Council of Science & Technology, The Republic of Korea (CAP-16-10-KIMS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Maizza or T. H. Yim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maizza, G., Eom, H., Lee, M. et al. Mechanical and fracture behaviour of the three-scale hierarchy structure in As-deposited and annealed nanocrystalline electrodeposited Ni–Fe alloys. J Mater Sci 54, 13378–13393 (2019). https://doi.org/10.1007/s10853-019-03835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03835-8

Navigation