Skip to main content

Advertisement

Log in

Waterborne acrylic hybrid adhesives based on a methacrylate-functionalized porous clay heterostructure for potential lamination application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new waterborne acrylic (WAC) hybrid adhesive was evaluated for an untreated polypropylene lamination. The WAC hybrid adhesive was formulated with a new class of porous clay heterostructure (PCH), which was modified with 3-(trimethoxysilyl)propyl methacrylate (as a coupling agent) to promote chemical bonding with the acrylic matrix to form a methacrylate-functionalized PCH (MPCH). The WAC hybrid adhesive was based on copolymers (2-ethylhexyl acrylate, ethylene glycol methyl ether acrylate, 2-(hydroxyethyl) methacrylate, styrene and acrylic acid) with varying amounts of MPCH. The scanning electron microscopy micrographs revealed the presence of a well dispersed MPCH distributed throughout the matrix. The optimal adhesive performance, in terms of the 180° peel strength of bonded joints, of 140.2 N/m was achieved using 1.5 wt% of MPCH, while the thermal stability of the adhesives was improved with increasing MPCH loading levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. United States Environmental Protection Agency: The 2011 National Emissions Inventory, version 2 Technical Support Document (2015). Available at: https://www.epa.gov/sites/production/files/2015-10/documents/nei2011v2_tsd_14aug2015.pdf (accessed January 20, 2017).

  2. A. Romo-Uribe, J.A. Arcos-Casarrubias, M.L. Hernandez-Vargas, A. Reyes-Mayer, M. Aguilar-Franco, and J. Bagdhachi: Acrylate hybrid nanocomposite coatings based on SiO2 nanoparticles by in situ batch emulsion polymerization. Prog. Org. Coat. 97, 288 (2016).

    Article  CAS  Google Scholar 

  3. S. Huang, D. Fan, Y. Lei, and H. Huang: Alkoxysilane-functionalized acrylic copolymer latexes. I. Particle size, morphology, and film-forming properties. J. Appl. Polym. Sci. 94, 954 (2004).

    Article  CAS  Google Scholar 

  4. S. Ebnesajjad: Adhesive Technology Handbook, 2nd ed. (William Andrew, New York, USA, 2009); ch. 5, p. 63.

    Google Scholar 

  5. D.E. Packham: Handbook of Adhesion (Longman Scientific & Technical, Harlow, England, 1992).

    Google Scholar 

  6. C. Sanchez, B. Julián, P. Belleville, and M. Popall: Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559 (2005).

    Article  CAS  Google Scholar 

  7. L. Solhi, M. Atai, A. Nodehi, M. Imani, A. Ghaemi, and K. Khosravi: Poly(acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dent. Mater. 28, 369 (2012).

    Article  CAS  Google Scholar 

  8. G. Diaconu, M. Paulis, and J.R. Leiza: Towards the synthesis of high solids content waterborne poly(methyl methacrylate-co-butyl acrylate)/montmorillonite nanocomposites. Polymer 49, 2444 (2008).

    Article  CAS  Google Scholar 

  9. M. Mičušík, A. Bonnefond, M. Paulis, and J.R. Leiza: Synthesis of waterborne acrylic/clay nanocomposites by controlled surface initiation from macroinitiator modified montmorillonite. Eur. Polym. J. 48, 896 (2012).

    Article  Google Scholar 

  10. B. Xiang and J. Zhang: Using ultrasound-assisted dispersion and in situ emulsion polymerization to synthesize TiO2/ASA (acrylonitrile-styrene-acrylate) nanocomposites. Composites, Part B 99, 196 (2016).

    Article  CAS  Google Scholar 

  11. C.H. Campos, B.F. Urbano, and B.L. Rivas: Synthesis and characterization of organic-inorganic hybrid composites from poly(acrylic acid)-[3-(trimethoxysilyl)propyl methacrylate]-Al2O3. Composites, Part B 57, 1 (2014).

    Article  CAS  Google Scholar 

  12. M.Z. Rong, Q.L. Ji, M.Q. Zhang, and K. Friedrich: Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J. 38, 1573 (2002).

    Article  CAS  Google Scholar 

  13. C.C. Chang, T.Y. Oyang, Y.C. Chen, F.H. Hwang, and L.P. Cheng: Preparation of hydrophobic nanosilica-filled polyacrylate hard coatings on plastic substrates. J. Coat. Technol. Res. 11, 381 (2014).

    Article  CAS  Google Scholar 

  14. D.J. Lin, T.M. Don, C.C. Chen, B.Y. Lin, C.K. Lee, and L.P. Cheng: Preparation of a nanosilica-modified negative-type acrylate photoresist. J. Appl. Polym. Sci. 107, 1179 (2008).

    Article  CAS  Google Scholar 

  15. S.P. Gumfekar, K.J. Kunte, L. Ramjee, K.H. Kate, and S.H. Sonawane: Synthesis of CaCO3–P(MMA-BA) nanocomposite and its application in water based alkyd emulsion coating. Prog. Org. Coat. 72, 632 (2011).

    Article  CAS  Google Scholar 

  16. A. Bonnefond, M. Mičušík, M. Paulis, J.R. Leiza, R.F.A. Teixeira, and S.A.F. Bon: Morphology and properties of waterborne adhesives made from hybrid polyacrylic/montmorillonite clay colloidal dispersions showing improved tack and shear resistance. Colloid Polym. Sci. 291, 167 (2013).

    Article  CAS  Google Scholar 

  17. J.K. Oh, C.H. Park, S.W. Lee, J.W. Park, and H.J. Kim: Adhesion performance of PSA–clay nano-composites by the in situ polymerization and mechanical blending. Int. J. Adhes. Adhes. 47, 13 (2013).

    Article  CAS  Google Scholar 

  18. J. Kajtna, U. Šebenik, and M. Krajnc: Synthesis and dynamic mechanical analysis of nanocomposite UV crosslinkable 100% solid acrylic pressure sensitive adhesives. Int. J. Adhes. Adhes. 49, 18 (2014).

    Article  CAS  Google Scholar 

  19. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, and R. Kumar: Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 38, 1232 (2013).

    Article  CAS  Google Scholar 

  20. Y. Guo, M. Wang, H. Zhang, G. Liu, L. Zhang, and X. Qu: The surface modification of nanosilica, preparation of nanosilica/acrylic core–shell composite latex, and its application in toughening PVC matrix. J. Appl. Polym. Sci. 107, 2671 (2008).

    Article  CAS  Google Scholar 

  21. K. Landfester: Polymer dispersions and their industrial applications. Macromol. Chem. Phys. 204, 542 (2003).

    Article  CAS  Google Scholar 

  22. A.B. Foster, P.A. Lovell, and M.A. Rabjohns: Control of adhesive properties through structured particle design of water-borne pressure-sensitive adhesives. Polymer 50, 1654 (2009).

    Article  CAS  Google Scholar 

  23. P.H.H. Araújo, C. Abad, J.C. de la Cal, J.C. Pinto, and J.M. Asua: Emulsion polymerization in a loop reactor: Effect of the operation conditions. Polym. React. Eng. 7, 303 (1999).

    Article  Google Scholar 

  24. S. Brunauer, P.H. Emmett, and E. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  25. E.P. Barrett, L.G. Joyner, and P.P. Halenda: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  26. M.L. Hair: Infrared Spectroscopy in Surface Chemistry (Marcel Dekker Inc., New York, USA, 1967).

    Google Scholar 

  27. N. Bunnak, S. Ummartyotin, P. Laoratanakul, A.S. Bhalla, and H. Manuspiya: Synthesis and characterization of magnetic porous clay heterostructure. J. Porous Mater. 21, 1 (2013).

    Article  Google Scholar 

  28. L. Wenfang, G. Zhaoxia, and Y. Jian: Preparation of crosslinked composite nanoparticles. J. Appl. Polym. Sci. 97, 1538 (2005).

    Article  Google Scholar 

  29. S. Brunauer, L.S. Deming, W.E. Deming, and E. Teller: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723 (1940).

    Article  CAS  Google Scholar 

  30. K.S.W. Sing, D.H. Everett, R.A.W. Hual, L. Moscou, R.A. Pierotti, J. Rouquérol, and T. Siemieniewska: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  31. J. Vega-Baudrit, V. Navarro-Bañón, P. Vázquez, and J.M. Martín-Martínez: Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives. Int. J. Adhes. Adhes. 26, 378 (2006).

    Article  CAS  Google Scholar 

  32. A. Arevalillo, M. do Amaral, and J.M. Asua: Rheology of concentrated polymeric dispersions. Ind. Eng. Chem. Res. 45, 3280 (2006).

    Article  CAS  Google Scholar 

  33. W.C. Lin, C.H. Yang, T.L. Wang, Y.T. Shieh, and W.J. Chen: Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica. Express Polym. Lett. 6, 2 (2012).

    Article  CAS  Google Scholar 

  34. C. Feldgitscher, H. Peterlik, S. Ivanovici, M. Puchberger, and G. Kickelbick: Crosslinked hybrid polymer matrices with nanostructure directing abilities for lanthanum hydroxide growth. Chem. Commun. 37, 5564 (2009).

    Article  Google Scholar 

  35. M. Mahkam and L. Vakhshouri: Colon-specific drug delivery behavior of pH-responsive PMAA/perlite composite. Int. J. Mol. Sci. 11, 1546 (2010).

    Article  CAS  Google Scholar 

  36. J.L. de la Fuente, M. Fernández-García, and E.L. Madruga: Characterization and thermal properties of poly(n-butyl acrylate-g-styrene) graft copolymers. J. Appl. Polym. Sci. 80, 783 (2001).

    Article  Google Scholar 

  37. D. Sun, X. Miao, K. Zhang, H. Kim, and Y. Yuan: Triazole-forming waterborne polyurethane composites fabricated with silane coupling agent functionalized nano-silica. J. Colloid Interface Sci. 361, 483 (2011).

    Article  CAS  Google Scholar 

  38. H.H. Horowitz and G. Metzger: A new analysis of thermogravimetric traces. Anal. Chem. 35, 1464 (1963).

    Article  CAS  Google Scholar 

  39. M. Mirzataheri, A.R. Mahdavian, and M. Atai: Kinetic studies of the preparation of nanocomposites based on encapsulated Cloisite 30B in poly[styrene-co-(butyl acrylate)] via mini-emulsion polymerization. Polym. Int. 60, 613 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was financially supported by Research and Researchers for Industries (RRI), the Thailand Research Fund (TRF) Grant number PHD56I0019. Additionally, the authors are thankful for the utilization of the experimental facilities at College of Polymer Science and Polymer Engineering National Polymer Innovation Center, The University of Akron and the certificated proofreader, Dr. Robert Butcher, at the Publication Counseling Unit, Science Department, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hathaikarn Manuspiya.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruanpan, S., Soucek, M.D. & Manuspiya, H. Waterborne acrylic hybrid adhesives based on a methacrylate-functionalized porous clay heterostructure for potential lamination application. Journal of Materials Research 32, 3689–3698 (2017). https://doi.org/10.1557/jmr.2017.332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.332

Navigation