Skip to main content
Log in

Effects of pre-treatments on precipitate microstructures and creep-rupture behavior of an Al-Zn-Mg-Cu alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of pre-treatments on the precipitate microstructures of an Al-Zn-Mg-Cu alloy are investigated. Meanwhile, the creep-rupture behavior of the under-aged and peak-aged alloys are comparatively analyzed. Additionally, the effects of pre-treatment on the fracture mechanisms are discussed. It is found that the precipitate microstructures are sensitive to pre-treatments. The intragranular precipitates of the peak-aged alloy are larger than those of the under-aged. The precipitate free zone of the peak-aged alloy is wider than that of the under-aged. Some large intergranular precipitates appear on the grain boundaries of the under-aged alloy, and induce the nucleation of microvoids. Eventually, the creep fracture of the under-aged alloy is accelerated. Therefore, the differences in microstructures lead to the shorter creep-rupture life of the under-aged alloy, compared to the peak-aged alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang: Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J. Alloys Compd., 550, 438 (2013).

    Article  CAS  Google Scholar 

  2. M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park: Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater. Des., 57, 250 (2014).

    Article  CAS  Google Scholar 

  3. C.J. Shi, J. Lai, and X.G. Chen: Microstructural evolution and dynamic softening mechanisms of Al–Zn–Mg–Cu alloy during hot compressive deformation. Materials, 7, 244 (2014).

    Article  CAS  Google Scholar 

  4. M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, and P. Changizian: The strain-compensated constitutive equation for high temperature flow behavior of an Al–Zn–Mg–Cu alloy. J. Mater. Eng. Perform. 23, 4002 (2014).

    Article  CAS  Google Scholar 

  5. Y.C. Lin and X.M. Chen: A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32, 1733 (2011).

    Article  CAS  Google Scholar 

  6. K. Elkhodary, W. Lee, L.P. Sun, D.W. Brenner, and M.A. Zikry: Deformation mechanisms of an Ω precipitate in a high-strength aluminum alloy subjected to high strain rates. J. Mater. Res. 26, 487 (2011).

    Article  CAS  Google Scholar 

  7. T.S.B. Naser and G. Krallics: Mechanical behavior of multiple-forged Al 7075 aluminum alloy. Acta Polytech. Hung. 11, 103 (2014).

    Google Scholar 

  8. N. Haghdadi, A. Zarei-Hanzaki, H.R. Abedi, and O. Sabokpa: The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy. Mater. Sci. Eng., A. 549, 93 (2012).

    Article  CAS  Google Scholar 

  9. W.T. Huo, L.G. Hou, H. Cui, L.Z. Zhuang, and J.S. Zhang: Fine-grained AA 7075 processed by different thermo-mechanical processing. Mater. Sci. Eng., A. 618, 244 (2014).

    Article  CAS  Google Scholar 

  10. M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park: Characterization of microstructure and deformation texture during equal channel Angular pressing of Al–Zn–Mg–Cu alloy. J. Alloys Compd. 576, 350 (2013).

    Article  CAS  Google Scholar 

  11. P. Shaterani, A. Zarei-Hanzaki, S.M. Fatemi-Varzaneh, and S.B. Hassas-Irani: The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion. Mater. Des. 58, 535 (2014).

    Article  CAS  Google Scholar 

  12. J.K. Park and A.J. Ardell: Microchemical analysis of precipitate free zones in 7075-A1 in the T6, T7 and RRA tempers. Acta Mater. 39, 591 (1991).

    Article  CAS  Google Scholar 

  13. K.K. Sankaran, R. Perez, and K.V. Jata: Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: Modeling and experimental studies. Mater. Sci. Eng., A. 297, 223 (2001).

    Article  Google Scholar 

  14. Y.J. Shi, Q.L. Pan, M.J. Li, X. Huang, and B. Li: Effect of Sc and Zr additions on corrosion behaviour of Al–Zn–Mg–Cu alloys. J. Alloys Compd. 612, 42 (2014).

    Article  CAS  Google Scholar 

  15. A.S. El-Amoush: Investigation of corrosion behaviour of hydrogenated 7075-T6 aluminum alloy. J. Alloys Compd. 443, 171 (2007).

    Article  CAS  Google Scholar 

  16. A.S. El-Amoush: Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions. Mater. Chem. Phys. 126, 607 (2011).

    Article  CAS  Google Scholar 

  17. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 58, 4814, (2010).

    Article  CAS  Google Scholar 

  18. W.C. Yang, S.X. Ji, Q. Zhang, and M.P. Wang: Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η’ precipitate. Mater. Des. 85, 752 (2015).

    Article  CAS  Google Scholar 

  19. J.F. Li, N. Birbilis, C.X. Li, Z.Q. Jia, B. Cai, and Z.Q. Zheng: Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Mater. Charact. 60, 1334 (2009).

    Article  CAS  Google Scholar 

  20. Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang: Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy. Mater. Des. 83, 866 (2015).

    Article  CAS  Google Scholar 

  21. Y.C. Lin, G. Liu, M.S. Chen, Y.C. Huang, Z.G. Chen, X. Ma, Y.Q. Jiang, and J. Li: Corrosion resistance of a two-stage stress-aged Al-Cu-Mg alloy: Effects of stress-aging temperature. J. Alloys Compd. 657, 855 (2016).

    Article  CAS  Google Scholar 

  22. Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, and H.M. Zhou: Effect of creep-aging on precipitates of 7075 aluminum alloy. Mater. Sci. Eng., A. 588, 347 (2013).

    Article  CAS  Google Scholar 

  23. L.T. Li, Y.C. Lin, H.M. Zhou, Y.C. Xia, and Y.Q. Jiang: Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Comput. Mater. Sci. 73, 72 (2013).

    Article  CAS  Google Scholar 

  24. J.T. Maximov, G.V. Duncheva, A.P. Anchev, and M.D. Ichkova: Modeling of strain hardening and creep behaviour of 2024T3 aluminium alloy at room and high temperatures. Comput. Mater. Sci. 83, 381 (2014).

    Article  CAS  Google Scholar 

  25. J.T. Maximov, G.V. Duncheva, and A.P. Anchev: An approach to modeling time-dependent creep and residual stress relaxation around cold worked holes in aluminium alloys at room temperature. Eng. Failure Anal. 45, 1 (2014).

    Article  CAS  Google Scholar 

  26. Y.Q. Jiang, Y.C. Lin, C. Phaniraj, Y.C. Xia, and H.M. Zhou: Creep and creep–rupture behavior of 2124-T851 aluminum alloy. High Temp. Mater. Processes 32, 533 (2013).

    Article  CAS  Google Scholar 

  27. Y.C. Lin, Y.C. Xia, X.S. Ma, Y.Q. Jiang, and M.S. Chen: High-temperature creep behavior of Al-Cu-Mg alloy. Mater. Sci. Eng., A. 550, 125 (2012).

    Article  CAS  Google Scholar 

  28. N. Mahathaninwong, Y. Zhou, S.E. Babcock, T. Plookphol, J. Wannasin, and S. Wisutmethangoon: Creep rupture behavior of semi-solid cast 7075-T6 Al alloy. Mater. Sci. Eng., A. 556, 107 (2012).

    Article  CAS  Google Scholar 

  29. A. Yousefiani, F.A. Mohamed, and J.C. Earthman: Creep rupture mechanisms in annealed and overheated 7075 Al under multiaxial stress states. Metall. Mater. Trans. 31, 2807 (2000).

    Article  Google Scholar 

  30. V. Srivastava, J.P. Williams, K.R. McNee, G.W. Greenwood, and H. Jones: Low stress creep behaviour of 7075 high strength aluminium alloy. Mater. Sci. Eng., A. 382, 50 (2004).

    Article  CAS  Google Scholar 

  31. A.G. Leacock, C. Howe, D. Brown, O.G. Lademob, and A. Deering: Evolution of mechanical properties in a 7075 Al-alloy subject to natural ageing. Mater. Des. 49, 160 (2013).

    Article  CAS  Google Scholar 

  32. J. Buha, R.N. Lumley, and A.G. Crosky: Secondary ageing in an aluminium alloy 7050. Mater. Sci. Eng., A. 492, 1 (2008).

    Article  CAS  Google Scholar 

  33. J.N. Florando, J.D. Margraf, J.F. Reus, A.T. Anderson, R.C. McCallen, M.M. LeBlanc, J.R. Stanley, A.M. Rubenchik, S.S. Wu, and W.H. Lowdermilk: Modeling the effect of laser heating on the strength and failure of 7075-T6 aluminum. Mater. Sci. Eng., A. 640, 402 (2015).

    Article  CAS  Google Scholar 

  34. Y. Liu, D. Jiang, B. Li, W.S. Yang, and J. Hu: Effect of cooling aging on microstructure and mechanical properties of an Al–Zn–Mg–Cu alloy. Mater. Des. 57, 79 (2014).

    Article  CAS  Google Scholar 

  35. N.C. Danh, K. Rajan, and W. Wallace: A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum. Metall. Mater. Trans. 14, 1843 (1983).

    Article  Google Scholar 

  36. J.F. Li, Z.W. Peng, C.X. Li, Z.Q. Jia, W.J. Chen, and Z.Q. Zheng: Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans. Nonferrous Met. Soc. China 18, 755 (2008).

    Article  CAS  Google Scholar 

  37. J.K. Park and A.J. Ardell: Precipitate microstructure of peak-aged 7075 Al. Scr. Mater. 22, 1115 (1988).

    CAS  Google Scholar 

  38. Z.W. Du, Z.M. Sun, B.L. Shao, T.T. Zhou, and C.Q. Chen: Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal ageing. Mater. Charact. 56, 121 (2006).

    Article  CAS  Google Scholar 

  39. M.H. Li, Y.Q. Yang, Z.Q. Feng, B. Huang, X. Luo, J.H. Lou, and J.G. Ru: Precipitation sequence of η phase along low-angle grain boundaries in Al-Zn-Mg-Cu alloy during artificial aging. Trans. Nonferrous Met. Soc. China 24, 2061 (2014).

    Article  CAS  Google Scholar 

  40. X.F. Xu, Y.G. Zhao, B.D. Ma, and M. Zhang: Electropulsing induced evolution of grain-boundary precipitates without loss of strength in the 7075 Al alloy. Mater. Charact. 105, 90 (2015).

    Article  CAS  Google Scholar 

  41. P. Lejcek: Grain boundary segregation in metals, 1st ed. (Springer, Berlin, Germany, 2010); pp. 173–201.

    Book  Google Scholar 

  42. R.G. Faulkner: Segregation to boundaries and interfaces in solids. Int. Mater. Rev. 41, 198 (1996).

    Article  CAS  Google Scholar 

  43. C. Panseri, F. Gatto, and T. Federighi: Interaction between solute magnesium atoms and vacancies in aluminium. Acta Metall. 6, 198 (1958).

    Article  CAS  Google Scholar 

  44. C. Panseri and T. Federighi: Evidence for the interaction between Mg atoms and vacancies in Al–Zn 10%–Mg 0.1% alloy. Acta Metall. 11, 575 (1963).

    Article  CAS  Google Scholar 

  45. T.D. Xu, K. Wang, and S.H. Song: Theoretical progress in non-equilibrium grain-boundary segregation (I): Thermally induced non-equilibrium grain-boundary segregation and intergranular embrittlement. Sci. China, Ser. E: Technol. Sci. 52, 893 (2009).

    Article  CAS  Google Scholar 

  46. H. Bakker, H.P. Bonzel, C.M. Bruff, M.A. Dayananda, W. Gust, J. Horváth, I. Kaur, G.V. Kidson, A.D. LeClaire, H. Mehrer, G.E. Murch, G. Neumann, N. Stolica, and N.A. Stolwijk: Diffusion in solid metals and alloys, 1st ed. Vol. 26, (Springer, Berlin, Germany, 1990); pp. 7–10.

    Google Scholar 

  47. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Mater. 58, 248 (2010).

    Article  CAS  Google Scholar 

  48. L. Ratke and P.W. Voorhees: Growth and coarsening: Ostwald ripening in material processing, 1st ed. (Springer, Berlin, Germany, 2013); pp. 150–193.

    Google Scholar 

  49. R.A. Oriani: Ostwald ripening of precipitates in solid matrices. Acta Mater. 12, 1399 (1964).

    Article  CAS  Google Scholar 

  50. R.C. Dorward: Precipitate coarsening during overaging of Al–Zn–Mg–Cu alloy. Mater. Sci. Technol. 15, 1133 (1999).

    Article  CAS  Google Scholar 

  51. G. Fribourg, Y. Bréchet, J.L. Chemin, and A. Deschamps: Evolution of precipitate microstructure during creep of an AA7449 T7651 aluminum alloy. Metall. Mater. Trans. 42, 3934 (2011).

    Article  CAS  Google Scholar 

  52. M. Kahlweit: Ostwald ripening of precipitates. Adv. Colloid Interface Sci. 5, 35 (1975).

    Article  Google Scholar 

  53. P.W. Voorhees: The theory of Ostwald ripening. J. Stat. Phys. 38, 231 (1985).

    Article  Google Scholar 

  54. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang: Hot tensile deformation behaviors and constitutive model of an Al–Zn–Mg–Cu alloy. Mater. Des. 59, 141 (2014).

    Article  CAS  Google Scholar 

  55. M.E. Kassner and T.A. Hayes: Creep cavitation in metals. Int. J. Plast. 19, 1715 (2003).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation Council of China (Grant Nos. 51375502, 51305466), the National Key Basic Research Program (Grant No. 2013CB035801), the Project of Innovation-driven Plan in Central South University (Grant No. 2015CX002), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2016JJ1017), and the Graduate Degree Thesis Innovation Foundation of Central South University (Grant No. 2015zzts202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.C., Wang, ZW., He, DG. et al. Effects of pre-treatments on precipitate microstructures and creep-rupture behavior of an Al-Zn-Mg-Cu alloy. Journal of Materials Research 31, 1286–1295 (2016). https://doi.org/10.1557/jmr.2016.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.144

Navigation