Skip to main content

Advertisement

Log in

An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I–V–VI chalcogenides including copper phosphide (Cu3P) and copper thiophosphate (Cu3PS4). Herein, we report a one-pot, solution-based synthesis of Cu3P nanocrystals utilizing an in situ phosphorus source: phosphorus pentasulfide (P2S5) in trioctylphosphine. By injecting this phosphorus source into a copper solution in oleylamine, uniform and size controlled Cu3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cu3P nanocrystals with decomposing thiourea forms nanoscale Cu3PS4 particles having p-type conductivity and an effective optical band gap of 2.36 eV. The synthesized Cu3PS4 produces a cathodic photocurrent during photoelectrochemical measurements, demonstrating its application as a light-absorbing material. Our process creates opportunities to explore other solution-based metal-phosphorus systems and their subsequent sulfurization for earth abundant, alternative energy materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
SCHEME 1

Similar content being viewed by others

References

  1. S.L. Brock and K. Senevirathne: Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications. J. Solid State Chem. 181, 1552–1559 (2008).

    Article  CAS  Google Scholar 

  2. S.T. Oyama, T. Gott, H. Zhao, and Y-K. Lee: Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 143, 94–107 (2009).

    Article  CAS  Google Scholar 

  3. J. Wang, Q. Yang, Z. Zhang, T. Li, and S. Zhang: Synthesis of InP nanofibers from tri(m-tolyl)phosphine: An alternative route to metal phosphide nanostructures. Dalton Trans. 39, 227–233 (2010).

    Article  CAS  Google Scholar 

  4. H. Pfeiffer, F. Tancret, and T. Brousse: Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: A probable anode for lithium ion batteries. Electrochim. Acta, 50, 4763–4770 (2005).

    Article  CAS  Google Scholar 

  5. M.C. Stan, R. Klöpsch, A. Bhaskar, J. Li, S. Passerini, and M. Winter: Cu3P binary phosphide: Synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries. Adv. Energy Mater. 3, 231–238 (2013).

    Article  CAS  Google Scholar 

  6. C. Villevieille, F. Robert, P.L. Taberna, L. Bazin, P. Simon, and L. Monconduit: The good reactivity of lithium with nanostructured copper phosphide. J. Mater. Chem. 18, 5956 (2008).

    Article  CAS  Google Scholar 

  7. J.A. Aitken, V. Ganzha-Hazen, and S.L. Brock: Solvothermal syntheses of Cu3P via reactions of amorphous red phosphorus with a variety of copper sources. J. Solid State Chem. 178, 970–975 (2005).

    Article  Google Scholar 

  8. Y. Xie, H.L. Su, X.F. Qian, X.M. Liu, and Y.T. Qian: A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 91, 88–91 (2000).

    Article  Google Scholar 

  9. S. Carenco, Y. Hu, I. Florea, O. Ersen, C. Boissie, N. Me, and C. Sanchez: Metal-dependent interplay between crystallization and phosphorus diffusion during the synthesis of metal phosphide nanoparticles. Chem. Mater. 24, 4134–4145 (2012).

    Article  CAS  Google Scholar 

  10. J. Park, B. Koo, K.Y. Yoon, Y. Hwang, M. Kang, J-G. Park, and T. Hyeon: Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 8433–8440 (2005).

    Article  CAS  Google Scholar 

  11. A.E. Henkes, Y. Vasquez, and R.E. Schaak: Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 129, 1896–1897 (2007).

    Article  CAS  Google Scholar 

  12. A.E. Henkes and R.E. Schaak: A general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem. Mater. 19, 4234–4242 (2007).

    Article  CAS  Google Scholar 

  13. L. De Trizio, A. Figuerola, L. Manna, A. Genovese, C. George, R. Brescia, Z. Saghi, R. Simonutti, M. Van Huis, and A. Falqui: Size tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. ACS Nano 6, 32–41 (2012).

    Article  Google Scholar 

  14. V. Itthibenchapong, R.S. Kokenyesi, A.J. Ritenour, L.N. Zakharov, S.W. Boettcher, J.F. Wager, and D.A. Keszler: Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers. J. Mater. Chem. C 1, 657 (2013).

    Article  CAS  Google Scholar 

  15. L. Yu, R.S. Kokenyesi, D.A. Keszler, and A. Zunger: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 43–48 (2013).

    Article  CAS  Google Scholar 

  16. D.H. Foster, V. Jieratum, R. Kykyneshi, D.A. Keszler, and G. Schneider: Electronic and optical properties of potential solar absorber Cu3PSe4. Appl. Phys. Lett. 99, 181903 (2011).

    Article  Google Scholar 

  17. R.B. Balow, E.J. Sheets, M.M. Abu-Omar, and R. Agrawal: Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion. Chem. Mater. 27, 2290–2293 (2015).

    Article  CAS  Google Scholar 

  18. R. Nitsche and P. Wild: Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5, 419–423 (1970).

    Article  CAS  Google Scholar 

  19. J.V. Marzik, A.K. Hsieh, K. Dwight, and A. Wold: Photoelectronic properties of Cu3PS4 and Cu3PS3Se single crystals. J. Solid State Chem. 49, 43–50 (1983).

    Article  CAS  Google Scholar 

  20. R. Blachnik, B. Gather, and E. Andrae: Ternary chalcogenide systems: the Quasiternary System Ag2S-Cu2S-P4S10. J. Therm. Anal. 37, 1289–1298 (1991).

    Article  CAS  Google Scholar 

  21. H. Andrae: Metal sulphide-tetraphosphorusdekasulphide phase diagrams. J. Alloys Compd. 189, 209–215 (1992).

    Article  CAS  Google Scholar 

  22. A. Pfitzner and S. Reiser: Refinement of the crystal structures of Cu3PS4 and Cu3SbS4 and a comment on normal tetahedral structures. Z. Kristallogr. 217, 51–54 (2002).

    CAS  Google Scholar 

  23. S. Uk Son, I. Kyu Park, J. Park, and T. Hyeon: Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 1, 778–779 (2004).

    Article  Google Scholar 

  24. S. Chen, X. Zhang, Q. Zhang, and W. Tan: Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res. Lett. 4, 1159–1165 (2009).

    Article  CAS  Google Scholar 

  25. X. Hou, X. Zhang, S. Chen, Y. Fang, J. Yan, N. Li, and P. Qi: Facile synthesis of SERS active Ag nanoparticles in the presence of tri-n-octylphosphine sulfide. Appl. Surf. Sci. 257, 4935–4940 (2011).

    Article  CAS  Google Scholar 

  26. O. Olofsson: The Crystal Structure of Cu3P. Acta Chem. Scand. 26, 2777–2787 (1972).

    Article  CAS  Google Scholar 

  27. M.H. Mobarok and J.M. Buriak: Elucidating the surface chemistry of zinc phosphide nanoparticles through ligand exchange. Chem. Mater. 26(15), 4653 (2014).

    Article  CAS  Google Scholar 

  28. L. De Trizio, R. Gaspari, G. Bertoni, I. Kriegel, L. Moretti, F. Scotognella, L. Maserati, Y. Zhang, G.C. Messina, M. Prato, S. Marras, A. Cavalli, and L. Manna: Cu3-xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 27, 1120–1128 (2015).

    Article  Google Scholar 

  29. S. Wang, Q. Gao, and J. Wang: Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J. Phys. Chem. B 109, 17281–17289 (2005).

    Article  CAS  Google Scholar 

  30. V.P. Timchenko, A.L. Novozhilov, and O.A. Slepysheva: Kinetics of Thermal Decomposition of Thiourea. Russ. J. Gen. Chem. 74, 1046–1050 (2004).

    Article  CAS  Google Scholar 

  31. T. Unold and L. Gütay: Photoluminescence analysis of thin-film solar cells. In Advanced Characterization Techniques for Thin Film Solar Cells, D. Abou-Ras, T. Kirchartz, and U. Rau eds.; Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011; pp. 151–175.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to give special thanks to Karl Wood for his mass spectrometry assistance, and James Meyer for his experimental assistance. This work was supported by the National Science Foundation’s Solar Economy IGERT Grant No. 0903670. E.A.S. acknowledges support from the U.S. DOE Office of Science Facility at Brookhaven National Laboratory under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Agrawal.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Supplementary Material

43578_2015_30233710_MOESM1_ESM.docx

Supplemental Material: An In-situ Phosphorus Source for the Synthesis of Cu3P and the Subsequent Conversion to Cu3PS4 Nanoparticle Clusters (approximately 4.30 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheets, E.J., Yang, WC., Balow, R.B. et al. An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters. Journal of Materials Research 30, 3710–3716 (2015). https://doi.org/10.1557/jmr.2015.333

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.333

Navigation