Skip to main content

Advertisement

Log in

Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Multilayer stereo micro/nanometer-sized porous surface structures were prepared by selective chemical etching of biphasic calcium phosphate (BCP) scaffolds with hydroxyapatite (HAP)/β-tricalcium phosphate (β-TCP) weight ratios of 90/10, 80/20, 70/30, 60/40, and 50/50 in phosphoric acid solution. The porous surface structures revealed periodic fluctuations in the observed heights of micro/nanometer-sized needles. And the average height increased from 0.59 ± 0.02 to 12.09 ± 0.03 μm when the β-TCP content in BCP scaffolds rose from 10 to 50%. In vivo cell tests using MG-63 cells (belonging to the human osteosarcoma cell line) revealed that micro/nanometer-sized pores on the scaffold surface could provide location for cell adhesion and migration and facilitate the formation of gap junction between cells. The BCP scaffold with 40% β-TCP exhibited the optimal surface structure for cell seeding and growth due to the largest number of micro/nanometer-sized pores on the surface. However, excessive β-TCP led to the damage of micro/nanometer-sized porous surface structure, which further impeded the cell interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. F. Yang, C.Y. Xu, M. Kotaki, and S. Wang: Characterization of neural stem cells on electrospun poly(L-lactic acid) nanofibrous scaffold. J. Biomater. Sci., Polym. Ed. 15, 1483 (2004).

    CAS  Google Scholar 

  2. B. Cao, D. Zhou, M. Xue, G. Li, W. Yang, Q. Long, and L. Ji: Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Appl. Surf. Sci. 255, 505 (2008).

    CAS  Google Scholar 

  3. Z. Cheng and S.H. Teoh: Surface modification of ultra thin poly(ε-caprolactone) films using acrylic acid and collagen. Biomaterials 25, 1991 (2004).

    CAS  Google Scholar 

  4. R.A. Gittens, T. McLachlan, R. Olivares-Navarrete, and Y. Cai: The effects of combined micrometer-/submicrometer-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395 (2011).

    CAS  Google Scholar 

  5. R. Bagherzadeh, M. Latifi, S.S. Najar, M.A. Tehran, and L. Kong: Three-dimensional pore structure analysis of nano/microfibrous scaffolds using confocal laser scanning microscopy. J. Biomed. Mater. Res., A 101, 765 (2013).

    Google Scholar 

  6. L. He, P. Zhao, Q. Han, X. Wang, X. Cai, Y. Shi, and L. Zhou: Surface modification of poly-L-lactic acid fibrous scaffolds by a molecular-designed multiwalled carbon nanotube multilayer for enhancing cell interactions. Carbon 56, 224 (2013).

    CAS  Google Scholar 

  7. H. Choi and A.C. Sofranko: Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction. Adv. Funct. Mater. 16, 1067 (2006).

    CAS  Google Scholar 

  8. S. Khan and G. Newaz: A comprehensive review of surface modification for neural cell adhesion and patterning. J. Biomed. Mater. Res., A 93, 1209 (2010).

    Google Scholar 

  9. A.S. Andersson, F. Backhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo: Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 24, 3427 (2003).

    CAS  Google Scholar 

  10. A. Bignon, J. Chouteau, J. Chevalier, G. Fantozzi, J.P. Carret, P. Chavassieux, G. Boivin, M. Melin, and D. Hartmann: Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response. J. Mater. Sci.: Mater. Med. 14, 1089 (2003).

    CAS  Google Scholar 

  11. S.F. Ahmed, G.H. Rho, J.Y. Lee, S.J. Kim, H.Y. Kim, Y.J. Jang, M.W. Moon, and K.R. Lee: Nanoembossed structure on polypropylene induced by low energy Ar ion beam irradiation. Surf. Coat. Technol. 205, S104 (2010).

    CAS  Google Scholar 

  12. D.V. Bax, D.R. McKenzie, A.S. Weiss, and M.M.M. Bilek: Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. Acta Biomater. 5, 3371 (2009).

    CAS  Google Scholar 

  13. J. Stráský, J. Havlíková, L. Bačáková, P. Harcuba, M. Mhaede, and M. Janeček: Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Appl. Surf. Sci. 281, 73 (2013).

    Google Scholar 

  14. J. Venugopal, M.P. Prabhakaran, Y. Zhang, S. Low, A.T. Choon, and S. Ramakrishna: Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Philos. Trans. R. Soc., A 368, 2065 (2010).

    CAS  Google Scholar 

  15. J.P. Chen and C.H. Su: Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 7, 234 (2011).

    CAS  Google Scholar 

  16. S. Yamazaki, H. Maeda, A. Obata, K. Inukai, K. Kato, and T. Kasuga: Aluminum silicate nanotube coating of siloxane-poly(lactic acid)-vaterite composite fibermats for bone regeneration. J. Nanomater. 2012, 463768 (2012).

    Google Scholar 

  17. L. He, J. Chen, D.F. Farson, J.J. Lannutti, and S.I. Rokhlin: Wettability modification of electrospun poly(ɛ-caprolactone) fibers by femtosecond laser irradiation in different gas atmospheres. Appl. Surf. Sci. 257, 3547 (2011).

    CAS  Google Scholar 

  18. C. Rey, C. Combes, C. Drouet, and M.J. Glimcher: Bone mineral: Update on chemical composition and structure. Osteoporosis Int. 20, 1013 (2009).

    CAS  Google Scholar 

  19. D.M. Dohan Ehrenfest, P.G. Coelho, B.S. Kang, Y.T. Sul, and T. Albrektsson: Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 28, 198 (2010).

    Google Scholar 

  20. D. Veljović, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrović, and D.J. Janaćković: Microwave sintering of fine grained HAP and HAP/TCP bioceramics. Ceram. Int. 36, 595 (2010).

    Google Scholar 

  21. S. Nath, K. Biswas, K. Wang, R.K. Bordia, and B. Basu: Sintering, phase stability, and properties of calcium phosphate-mullite composites. J. Am. Ceram. Soc. 93, 1639 (2010).

    CAS  Google Scholar 

  22. P.R. Schmidlin, F. Nicholls, A. Kruse, R.A. Zwahlen, and F.E. Weber: Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Clin. Oral Implants Res. 24, 149 (2013).

    CAS  Google Scholar 

  23. M. Jabri, E. Mejdoubi, M. El Gadi, and B. Hammouti: Synthesis and optimization of a new calcium phosphate ceramic using a design of experiments. Res. Chem. Intermed. 39, 659 (2013).

    CAS  Google Scholar 

  24. H. Cao and N. Kuboyama: A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46, 386 (2010).

    CAS  Google Scholar 

  25. K. Elayaraja, V.S. Chandra, M.I. Joshy, R.V. Suganthi, K. Asokan, and S. Narayana Kalkura: Nanocrystalline biphasic resorbable calcium phosphate (HAp/β-TCP) thin film prepared by electron beam evaporation technique. Appl. Surf. Sci. 274, 203 (2013).

    CAS  Google Scholar 

  26. M. Lukić, Z. Stojanović, S.D. Škapin, M. Maček-Kržmanc, M. Mitrić, S. Marković, and D. Uskoković: Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. J. Eur. Ceram. Soc. 31, 19 (2011).

    Google Scholar 

  27. R. Emadi, S.I. Roohani Esfahani, and F. Tavangarian: A novel, low temperature method for the preparation of β-TCP/HAP biphasic nanostructured ceramic scaffold from natural cancellous bone. Mater. Lett. 64, 993 (2010).

    CAS  Google Scholar 

  28. T. Shiota, M. Shibata, K. Yasuda, and Y. Matsuo: Influence of β-tricalcium phosphate dispersion on mechanical properties of hydroxyapatite ceramics. J. Ceram Soc. Jpn. 116, 1002 (2008).

    CAS  Google Scholar 

  29. Y. Abe, Y. Okazaki, K. Hiasa, and K. Yasuda: Bioactive surface modification of hydroxyapatite. BioMed Res. Int. 2013, 626452 (2013).

    Google Scholar 

  30. O. Kaygili, C. Tatar, and F. Yakuphanoglu: Structural and dielectrical properties of Mg3-Ca3(PO4)2 bioceramics obtained from hydroxyapatite by sol-gel method. Ceram. Int. 38, 5713 (2012).

    CAS  Google Scholar 

  31. S. Kannan, S. Pina, and J.M.F. Ferreira: Formation of strontium-stabilized β-tricalcium phosphate from calcium-deficient apatite. J. Am. Ceram. Soc. 89, 3277 (2006).

    CAS  Google Scholar 

  32. C. Shuai, C. Gao, Y. Nie, H. Hu, Y. Zhou, and S. Peng: Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system. Nanotechnol. 22, 285703 (2011).

    Google Scholar 

  33. C. Shuai, C. Gao, Y. Nie, H. Hu, H. Qu, and S. Peng: Structural design and experimental analysis of a selective laser sintering system with nano-hydroxyapatite powder. J. Biomed. Nanotechnol. 6, 370 (2010).

    CAS  Google Scholar 

  34. C. Shuai, Y. Nie, C. Gao, P. Feng, J. Zhuang, Y. Zhou, and S. Peng: The microstructure evolution of nanohydroxapatite powder sintered for bone tissue engineering. J. Exp. Nanosci. 5, 598 (2012).

    Google Scholar 

  35. T. Akazawa, M. Murata, J. Hino, F. Nagano, T. Shigyo, T. Nomura, H. Inano, K. Itabashi, T. Yamagishi, K. Nakamura, T. Takahashi, S. Iida, and H. Kashiwazaki: Surface structure and biocompatibility of demineralized dentin matrix granules soaked in a simulated body fluid. Appl. Surf. Sci. 262, 51 (2012).

    CAS  Google Scholar 

  36. A. Figueiredo, P. Coimbra, A. Cabrita, F. Guerra, and M. Figueiredo: Comparison of a xenogeneic and an alloplastic material used in dental implants in terms of physico-chemical characteristics and in vivo inflammatory response. Mater. Sci. Eng., C 33, 3506 (2013).

    CAS  Google Scholar 

  37. J.D. Bass, E. Belamie, D. Grosso, C. Boissiere, T. Coradin, and C. Sanchez: Nanostructuration of titania films prepared by self-assembly to affect cell adhesion. J. Biomed. Mater. Res., A 93, 96 (2010).

    Google Scholar 

  38. A. Janshoff, A. Kunze, S. Michaelis, V. Heitmann, B. Reiss, and J. Wegener: Cell adhesion monitoring using substrate-integrated sensors. J. Adhes. Sci. Technol. 24, 2079 (2010).

    CAS  Google Scholar 

  39. C. Hu, Y. Ding, J. Chen, D. Liu, Y. Zhang, M. Ding, and G. Wang: Basic fibroblast growth factor stimulates epithelial cell growth and epithelial wound healing in canine corneas. Vet. Ophthalmol. 12, 170 (2009).

    CAS  Google Scholar 

  40. P. Leng, C. Ding, H. Zhang, and Y. Wang: Reconstruct large osteochondral defects of the knee with hIGF-1 gene enhanced Mosaicplasty. Knee 19, 804 (2012).

    Google Scholar 

  41. M. Houmard, Q. Fu, M. Genet, E. Saiz, and A.P. Tomsia: On the structural, mechanical, and biodegradation properties of HA/β-TCP robocast scaffolds. J. Biomed. Mater. Res., B 101, 1233 (2013).

    Google Scholar 

  42. G. Daculsi, T. Miramond, P. Borget, and S. Baroth: Smart calcium phosphate bioceramic scaffold for bone tissue engineering. Key Eng. Mater. 529–530, 19 (2013).

    Google Scholar 

  43. T.L. Arinzeh, S.J. Peter, M.P. Archambault, C. van den Bos, S. Gordon, K. Kraus, A. Smith, and S. Kadiyala: Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J. Bone Jt. Surg., Am. Vol. 85, 1927 (2003).

    Google Scholar 

  44. T.L. Arinzeha, T. Tranb, J. Mcalary, and G. Daculsi: A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26, 3631 (2005).

    Google Scholar 

  45. S. Kadiyala, N. Jaiswal, and S.P. Bruder: Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 3, 173 (1997).

    Google Scholar 

  46. S.H. Wang, P. Zhao, C. Lin, and Y.L. Huang: In vitro and in vivo osteoconductivity of bone marrow stromal cells in biomimetic polycaprolactone/calcium phosphate cement composites. J. Biomater. Tissue Eng. 3, 512 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the following funds: (1) The Natural Science Foundation of China (51222506, 81372366); (2) Hunan Provincial Natural Science Foundation of China(14JJ1006); (3) Program for New Century Excellent Talents in University (NCET-12-0544); (4) The Fundamental Research Funds for the Central Universities (2011JQ005, 2012QNZT015); (5) Project supported by the Fok Ying-Tong Education Foundation, China (131050); (6) Shenzhen Strategic Emerging Industrial Development Funds (JCYJ20130401160614372); (7) The Open-End Fund for the Valuable and Precision Instruments of Central South University; (8) The faculty research grant of Central South University (2013JSJJ011, 2013JSJJ046); (9) Hunan Provincial Innovation Foundation for Postgraduate.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cijun Shuai or Shuping Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Zhuang, J., Li, P. et al. Preparation of micro/nanometer-sized porous surface structure of calcium phosphate scaffolds and the influence on biocompatibility. Journal of Materials Research 29, 1144–1152 (2014). https://doi.org/10.1557/jmr.2014.100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.100

Navigation