Skip to main content
Log in

The oxidant peroxo method (OPM) as a new alternative for the synthesis of lead-based and bismuth-based oxides

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The oxidant peroxo method (OPM) exhibits several advantage and unique characteristics not found in the traditional methods for the synthesis of lead- and bismuth-based oxides. First of all, it is a clean method based on hydrogen peroxide that matches perfectly with the green chemistry approach. Second, the oxidizing local atmosphere provided by the precursor during its crystallization is unique among all the wet chemical techniques of synthesis, which usually result in reducing environment. Besides these advantages, only a few studies have focused on the use of the OPM to obtain better materials, which makes this field of study an excellent opportunity for the development of materials with higher purity and controlled morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. M. Yoshimura: Importance of soft solution processing for advanced inorganic materials. J. Mater. Res. 13, 796 (1998).

    Article  CAS  Google Scholar 

  2. M. Yoshimura and J. Livage: Soft processing for advanced inorganic materials. MRS Bull. 25, 12 (2000).

    Article  CAS  Google Scholar 

  3. M. Kakihana: Sol-gel preparation of high temperature superconducting oxides. J. Sol-Gel Sci. Technol. 6, 7 (1996).

    Article  CAS  Google Scholar 

  4. C.D.E. Lakeman and D.A. Payne: Sol-gel processing of electrical and magnetic ceramics. Mater. Chem. Phys. 38, 305 (1994).

    Article  CAS  Google Scholar 

  5. C.D. Chandler, C. Roger, and M.J. Hampdem-Smith: Chemical aspects of solution routes to perovskites-phase mixed-metal oxides from metalorganic precursors. Chem. Rev. 93, 1205 (1993).

    Article  CAS  Google Scholar 

  6. J.H. Esch and B.L. Feringa: New functional materials based on self-assembling organogels: From serendipity towards design. Angew. Chem. Int. Ed. 39, 2263 (2000).

    Article  Google Scholar 

  7. E.R. Camargo and M. Kakihana: Peroxide based route free from halides for the synthesis of lead titanate powder. Chem. Mater. 13, 1181 (2001).

    Article  CAS  Google Scholar 

  8. T. Kubo: A new heteropolyacid with carbon as a heteroatom in a Keggin-like structure. Nature 312, 537 (1984).

    Article  Google Scholar 

  9. K. Yamanaka, H. Oakamoto, H. Kidou, and T. Kudo: Peroxontungstic acid films for electrochrmic display devides. Jpn. J. Apl. Phys. 25, 1420 (1986).

    Article  CAS  Google Scholar 

  10. K. Hinokuma, A. Kisjhimoto, and T. Kudo: Coloration dynamics of spin-coated MoO3·nH2O electrochromic films fabricated form peroxo-polymolybdate solution. J. Electrochem. Soc. 141, 876 (1994).

    Article  CAS  Google Scholar 

  11. A. Safari, Y.H. Lee, A. Halliyal, and R.E. Newham: 0-3 piezoelectric composites prepared by coprecipitated PbTiO3 powder. Am. Ceram. Soc. Bull. 66, 668 (1987).

    CAS  Google Scholar 

  12. G. Pfaff: Peroxide route to synthesize strontium titanate powders of different composition. J. Eur. Ceram. Soc. 9, 121 (1992).

    Article  CAS  Google Scholar 

  13. G. Pfaff: Synthesis of magnesium stannates by thermal decomposition of peroxo-precursors. Thermochim. Acta 37, 83 (1994).

    Article  Google Scholar 

  14. Z. Wang and X. Hu: Fabricatopn and electrochromic properties of spin-coated TiO2 thin films from peroxo-polytitanic acid. Thin Solid Films 352, 62 (1999).

    Article  CAS  Google Scholar 

  15. Z. Wang, X. Hu, and U. Helmerson: Peroxo sol-gel preparation: Photochromic/electrochromic properties of Mo-Ti oxide gels and thin films. J. Mater. Chem. 10, 2396 (2000).

    Article  CAS  Google Scholar 

  16. J. Hou, Y. Qu, D. Krsmanovic, and R.V. Kumar: Peroxide-based route assited with inverse microemulsion process to well-dispersed Bi4Ti3O12 nanocrystals. J. Nanopart. Res. 12, 1797 (2010).

    Article  CAS  Google Scholar 

  17. P. Tengvall, H. Elwing, L. Sjöqvist, I. Lundström, and L.M. Bjursten: Interaction between hydrogen peroxide and titanium: A possible role in the biocompatibility of titanium. Biomaterials 10, 118 (1989).

    Article  CAS  Google Scholar 

  18. P. Tengvall, T.P. Vikinge, I. Lundström, and B. Liedverg: FT-Raman spectroscopic studies of the degradation of titanium peroxy gels made form metallic and hydrogen peroxide. J. Colloid. Interface Sci. 160, 10 (1993).

    Article  CAS  Google Scholar 

  19. E.R. Camargo, M. Poppa, J. Frantti, and M. Kakihana: Wet-chemical route for the preparation of lead zirconate: An amorphous carbon and halide free precursor synthesized by hydrogen peroxide-based route. Chem. Mater. 13, 3843 (2001).

    Article  Google Scholar 

  20. E.R. Camargo and M. Kakihana: Lead hafnate (PbHfO3) perovskite powders obtained by the oxidant peroxo method free from halides and carbon. J. Am. Ceram. Soc. 85, 2107 (2002).

    Article  CAS  Google Scholar 

  21. E.R. Camargo, C.M. Barrado, C. Ribeiro, E.R. Leite, and E. Longo: Nanosized lead lanthanum titanate (PLT) ceramic powders synthesized by the oxidant peroxo method. J. Alloys Compd. 475, 817 (2009).

    Article  CAS  Google Scholar 

  22. A.H. Pinto, F.L. Souza, A.D. Chiquito, E. Longo, E.R. Leite, and E.R. Camargo: Characterization of dense lead lanthanum titanate ceramics prepared from powders synthesized by the oxidant peroxo method. Mater. Chem. Phys. 124, 1051 (2010).

    Article  CAS  Google Scholar 

  23. A.H. Pinto, F.L. Souza, E. Longo, E.R. Leite, and E.R. Camargo: Structural and dielectric characterization of praseodymium-modified lead titanate ceramics synthesized by the OPM route. Mater. Chem. Phys. 130, 256 (2011).

    Article  Google Scholar 

  24. E.R. Camargo, J. Frantti, and M. Kakihana: Low temperature chemical synthesis of lead zirconate titanate (PZT) powders free from halides and organics. J. Mater. Chem. 11, 1875 (2001).

    Article  CAS  Google Scholar 

  25. E.R. Camargo, E. Longo, E.R. Leite, and V.R. Mastelaro: Phase evolution of lead titanate from it amorphous precursor synthesized by the OPM wet-chemical route. J. Solid State Chem. 177, 1994 (2004).

    Article  CAS  Google Scholar 

  26. E.R. Camargo, F.L. Souza, E.R. Leite, and M. Kakihana: Structural and electrical characterization of dense lead zirconate titanate. J. Appl. Phys. 96, 2169 (2004).

    Article  CAS  Google Scholar 

  27. J.M. Calderon-Moreno and E.R. Camargo: Electron microscopy studies on the formation and evolution of sodium niobate nanoparticles from a polymeric precursor. Catal. Today 78, 539 (2003).

    Article  CAS  Google Scholar 

  28. E.R. Camargo, E. Longo, E.R. Leite, and M. Kakihana: Qualitative measurement of residual carbon in wet-chemically synthesized powders. Ceram. Int. 30, 2235 (2004).

    Article  CAS  Google Scholar 

  29. Q.M. Zhang, H. Wang, N. Kim, and L.E. Cross: Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 75, 454 (1994)

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by FAPESP (Grant No. 2012/07067-0), CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emerson R. Camargo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camargo, E.R., Dancini, M.G. & Kakihana, M. The oxidant peroxo method (OPM) as a new alternative for the synthesis of lead-based and bismuth-based oxides. Journal of Materials Research 29, 131–138 (2014). https://doi.org/10.1557/jmr.2013.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.288

Keywords

Navigation