Skip to main content
Log in

Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porous thermoplastic polyurethane (TPU) membranes were produced by the electrospinning process. Two different TPUs and their blends were used to investigate the effects of material composition, solution concentration, and rheological properties on the microstructure, fiber diameter, and fiber diameter distribution of the electrospun membranes. The ratios of hard and soft segments in the solutions were adjusted by varying the blend ratios of TPUs dissolved in N, N-dimethylformamide. The solutions with higher TPU concentrations and more hard segments exhibited a higher viscosity, larger storage and loss moduli, and greater electrospun jet stability. Solutions with concentrations around the critical chain entanglement concentration (Ce) produced bead or beaded fiber structures, while bead-free fibers of a uniform diameter were obtained when the concentration increased to about two times that of Ce. Relationships between the electrospun fiber diameter, the Berry number, and the normalized concentration of the solutions were studied as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

References

  1. M. Mohammadian and A.K. Haghi: Fabrication of nontoxic filters from regenerated silk fibroin and polyacrylonitrile fibers. Mater. Plast. 49(2), 90 (2012).

    CAS  Google Scholar 

  2. H.X. Wang, H. Ding, B. Lee, X.G. Wang, and T. Lin: Polypyrrole-coated electrospun nanofibre recovery of Au(III) from aqueous membranes for solution. J. Membrane Sci. 303(1–2), 119 (2007).

    CAS  Google Scholar 

  3. A. Sotoudeh, G. Jahanshahi, A. Jahanshahi, M.A. Takhtfooladi, I. Shabani, and M. Soleimani: Combination of poly L-lactic acid nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits. Acta. Cir. Bras. 27(10), 694 (2012).

    Google Scholar 

  4. A.R. Unnithan, N.A.M. Barakat, P.B.T. Pichiah, G. Gnanasekaran, R. Nirmala, Y.S. Cha, C.H. Jung, M. El-Newehy, and H.Y. Kim: Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr. Polym. 90(4), 1786 (2012).

    CAS  Google Scholar 

  5. J.Y. Park and I.H. Lee: Controlled release of ketoprofen from electrospun porous polylactic acid (PLA) nanofibers. J. Polym. Res. 18(6), 1287 (2011).

    CAS  Google Scholar 

  6. H. Jamil, S.S. Batool, Z. Imran, M. Usman, M.A. Rafiq, M. Willander, and M.M. Hassan: Electrospun titanium dioxide nanofiber humidity sensors with high sensitivity. Ceram. Int. 38(3), 2437 (2012).

    CAS  Google Scholar 

  7. T.Q. Doan, T.J. Boyle, L.A.M. Ottley, S.M. Hoppe, and T.M. Alam: Synthesis, characterization, electrospinning of novel tin amide alkoxides for lithium-ion battery application. Abstr. Pap. Am. Chem. S. 242 (2011).

  8. X.Y. Geng, O.H. Kwon, and J.H. Jang: Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27), 5427 (2005).

    CAS  Google Scholar 

  9. J. Han, T.X. Chen, C.J. Branford-White, and L.M. Zhu: Electrospun shikonin-loaded PCL/PTMC composite fiber mats with potential biomedical applications. Int. J. Pharm. 382(1–2), 215 (2009).

    CAS  Google Scholar 

  10. S. Megelski, J.S. Stephens, D.B. Chase, and J.F. Rabolt: Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22), 8456 (2002).

    CAS  Google Scholar 

  11. A. Awal, M. Sain, and M. Chowdhury: Preparation of cellulose-based nano-composite fibers by electrospinning and understanding the effect of processing parameters. Composites Part B 42(5), 1220 (2011).

    Google Scholar 

  12. D.H. Reneker and A.L. Yarin: Electrospinning jets and polymer nanofibers. Polymer 49(10), 2387 (2008).

    CAS  Google Scholar 

  13. S. De Vrieze, T. Van Camp, A. Nelvig, B. Hagstrom, P. Westbroek, and K. De Clerck: The effect of temperature and humidity on electrospinning. J. Mater. Sci. 44(5), 1357 (2009).

    CAS  Google Scholar 

  14. Z.M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223 (2003).

    CAS  Google Scholar 

  15. A.M. Afifi, H. Yamane, and Y. Kimura: Effect of polymer molecular weight on the electrospinning of polylactides in entangled and aligned fiber forms. Sen-I Gakkaishi. 66(2), 35 (2010).

    CAS  Google Scholar 

  16. M.G. McKee, T. Park, S. Unal, I. Yilgor, and T.E. Long: Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46(7), 2011 (2005).

    CAS  Google Scholar 

  17. A.C. Vega-Lugo and L.T. Lim: Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. J. Polym. Sci., Part B: Polym. Phys. 50(16), 1188 (2012).

    CAS  Google Scholar 

  18. J.M. Choi, H.C. Jang, J.Y. Hyeon, and J.H. Sok: Fabrication of PCL/MWCNTs nanofiber by electrospinning. Korean J. Met. Mater. 50(10), 763 (2012).

    CAS  Google Scholar 

  19. R. Nayak, I.L. Kyratzis, Y.B. Truong, R. Padhye, and L. Arnold: Melt-electrospinning of polypropylene with conductive additives. J. Mater. Sci. 47(17), 6387 (2012).

    CAS  Google Scholar 

  20. S.P. Rwei and C.C. Huang: Electrospinning PVA solution-rheology and morphology analyses. Fiber Polym. 13(1), 44 (2012).

    CAS  Google Scholar 

  21. C. Mit-uppatham, M. Nithitanakul, and P. Supaphol: Effects of solution concentration, emitting electrode polarity, solvent type, and salt addition on electrospun polyamide-6 fibers: A preliminary report. Macromol. Symp. 216, 293 (2004).

    CAS  Google Scholar 

  22. S.L. Shenoy, W.D. Bates, H.L. Frisch, and G.E. Wnek: Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 46(10), 3372 (2005).

    CAS  Google Scholar 

  23. M.G. McKee, G.L. Wilkes, R.H. Colby, and T.E. Long: Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37(5), 1760 (2004).

    CAS  Google Scholar 

  24. H.W. Tong and M. Wang: An investigation into the influence of electrospinning parameters on the diameter and alignment of poly(hydroxybutyrate-co-hydroxyvalerate) fibers. J. Appl. Polym. Sci. 120(3), 1694 (2011).

    CAS  Google Scholar 

  25. T. Groth, K. Klosz, E.J. Campbell, R.R.C. New, B. Hall, and H. Goering: Protein adsorption, lymphocyte adhesion and platelet-adhesion activation on polyurethane ureas is related to hard segment content and composition. J. Biomater. Sci., Polym. Ed. 6(6), 497 (1994).

    CAS  Google Scholar 

  26. J.J. Stankus, J.J. Guan, and W.R. Wagner: Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J. Biomed. Mater. Res. Part A 70(4), 603 (2004).

    Google Scholar 

  27. R.R. Klossner, H.A. Queen, A.J. Coughlin, and W.E. Krause: Correlation of Chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9(10), 2947 (2008).

    CAS  Google Scholar 

  28. M. Pakravan, M.C. Heuzey, and A. Ajji: A fundamental study of chitosan/PEO electrospinning. Polymer 52(21), 4813 (2011).

    CAS  Google Scholar 

  29. L. Buruaga, M.E. Munoz, L. Irusta, A. Gonzalez, and J.J. Iruin: Role of specific interactions on fiber formation in the electrospinning of poly(vinyl phenol)/poly(vinyl pyrrolidone) blend solutions. J. Appl. Polym. Sci. 114(5), 2922 (2009).

    CAS  Google Scholar 

  30. A. Varesano, A. Aluigi, C. Vineis, and C. Tonin: Study on the shear viscosity behavior of keratin/PEO blends for nanofibre electrospinning. J. Polym. Sci., Part B: Polym. Phys. 46(12), 1193 (2008).

    CAS  Google Scholar 

  31. U.A. Pinto, L.L.Y. Visconte, and R.C.R. Nunes: Mechanical properties of thermoplastic polyurethane elastomers with mica and aluminum trihydrate. Eur. Polym. J. 37(9), 1935 (2001).

    CAS  Google Scholar 

  32. Z.H. Dong, Y.B. Li, and Q. Zou: Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering. Appl. Surf. Sci. 255(12), 6087 (2009).

    CAS  Google Scholar 

  33. O. Buczek, D. Krowarsch, and J. Otlewski: Thermodynamics of single peptide bond cleavage in bovine pancreatic trypsin inhibitor (BPTI). Protein Sci. 11(4), 924 (2002).

    CAS  Google Scholar 

  34. S. Chisca, A.I. Barzic, I. Sava, N. Olaru, and M. Bruma: Morphological and rheological insights on polyimide chain entanglements for electrospinning produced fibers. J. Phys. Chem. B. 116(30), 9082 (2012).

    CAS  Google Scholar 

  35. Y.L. Ren, D.R. Picout, P.R. Ellis, and S.B. Ross-Murphy: Solution properties of the xyloglucan polymer from Afzelia africana. Biomacromolecules 5(6), 2384 (2004).

    CAS  Google Scholar 

  36. I.S. Chronakis and M. Ramzi: Isotropic-nematic phase equilibrium and phase separation of kappa-carrageenan in aqueous salt solution: Experimental and theoretical approaches. Biomacromolecules 3(4), 793 (2002).

    CAS  Google Scholar 

  37. H.M. Kopperud, F.K. Hansen, and B. Nystrom: Effect of surfactant and temperature on the rheological properties of aqueous solutions of unmodified and hydrophobically modified polyacrylamide. Macromol. Chem. Phys. 199(11), 2385 (1998).

    CAS  Google Scholar 

  38. H.R. Nie, A.H. He, J.F. Zheng, S.S. Xu, J.X. Li, and C.C. Han: Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9(5), 1362 (2008).

    CAS  Google Scholar 

  39. W.E. Krause, E.G. Bellomo, and R.H. Colby: Rheology of sodium hyaluronate under physiological conditions. Biomacromolecules 2(1), 65 (2001).

    CAS  Google Scholar 

  40. F. Bordi, R.H. Colby, C. Cametti, L. De Lorenzo, and T. Gili: Electrical conductivity of polyelectrolyte solutions in the semidilute and concentrated regime: The role of counterion condensation. J. Phys. Chem. B 106(27), 6887 (2002).

    CAS  Google Scholar 

  41. P.D. Hong, C.M. Chou, and C.H. He: Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer 42(14), 6105 (2001).

    CAS  Google Scholar 

  42. J. Tao and S. Shivkumar: Molecular weight dependent structural regimes during the electrospinning of PVA. Mater. Lett. 61(11–12), 2325 (2007).

    CAS  Google Scholar 

  43. P. Rai and S.L. Rosen: An empirical relation between the Mark-Houwink-Sakurada constants. J. Polym. Sci., Part B: Polym. Phys. 35(12), 1985 (1997).

    CAS  Google Scholar 

  44. P. Gupta, C. Elkins, T.E. Long, and G.L. Wilkes: Electrospinning of linear homopolymers of poly(methyl methacrylate): Exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13), 4799 (2005).

    CAS  Google Scholar 

  45. M.G. McKee, C.L. Elkins, and T.E. Long: Influence of self-complementary hydrogen bonding on solution rheology/electrospinning relationships. Polymer 45(26), 8705 (2004).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Chinese Scholarship Council and the Wisconsin Institute for Discovery, the financial support of the National Nature Science Foundation of China (Grant Nos.51073061 and 21174044), the Fundamental Research Funds for Central Universities (Grant No.2011ZZ0011), and the 973 Program (Grant No. 2012CB025902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lih-Sheng Turng or Xiang-Fang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, HY., Jing, X., Jacques, B.R. et al. Characterization and properties of electrospun thermoplastic polyurethane blend fibers: Effect of solution rheological properties on fiber formation. Journal of Materials Research 28, 2339–2350 (2013). https://doi.org/10.1557/jmr.2013.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.115

Navigation