Skip to main content
Log in

Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Asphalt bitumens are complex colloidal systems of high viscosity and complex behavior, which are mainly used for making asphalt concrete for road surfaces. Thermal and rheological characterizations are needed to understand their complex behavior, particularly at the processing stage. Prediction of properties at short and long observation times is usually performed through time-temperature superposition (TTS) models, which make use of some calculated shift factors. The influence of crystallization-like transformation processes on the validity of these shift factors is investigated here by temperature-modulated differential scanning calorimetry (TMDSC). Four asphalt emulsions are considered in this work, each one with a specific transformation behavior. The structure-properties relationships are explained on the basis of the transformation profiles and rheological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. O. Gonzalez, J. Pena, M. Munoz, A. Santamaria, A. Perez-Lepe, F. Martinez-Boza, and C. Gallegos: Rheological techniques as a tool to analyze polymer-bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends. Energy Fuels 16 (5), 1256 (2002).

    Article  CAS  Google Scholar 

  2. O. Gonzalez, M. Munoz, A. Santamaria, M. Garcia-Morales, F. Navarro, and P. Partal: Rheology and stability of bitumen/EVA blends. Eur. Polym. J. 40 (10), 2365 (2004).

    Article  CAS  Google Scholar 

  3. X. Lu and U. Isacsson: Rheological characterization of styrene-butadiene-styrene copolymer-modified bitumens. Constr. Build. Mater. 11 (1), 23 (1997).

    Article  Google Scholar 

  4. H. Kim, S. Lee, and S.N. Amirkhanian: Effects of warm mix asphalt additives on performance properties of polymer-modified asphalt binders. Can. J. Civ. Eng. 37 (1), 17 (2010).

    Article  CAS  Google Scholar 

  5. H. Behbahani, H. Ziari, H. Fazaeli, and J. Rahmani: Comparison of performance of asphalt mixtures containing polymer modifiers. J. Test. Eval. 37 (5), 431 (2009).

    CAS  Google Scholar 

  6. S. Kim, G.A. Sholar, T. Byron, and J. Kim: Performance of polymer-modified asphalt mixture with reclaimed asphalt pavement. Transp. Res. Rec. 2126, 109 (2009).

    Article  CAS  Google Scholar 

  7. T. Yu, C. Li, and S. Wu: Performance of polymer-modified asphalt bridge expansion joints in low-temperature regions. J. Perform. Constr. Facil 23 (4), 227 (2009).

    Article  Google Scholar 

  8. C. Fang, T. Li, Z. Zhang, and D. Jing: Modification of asphalt by packaging waste-polyethylene. Polymer Composites 29 (5), 500 (2008).

    Article  CAS  Google Scholar 

  9. Y. Tasdemir and E. Agar: Investigation of the low-temperature performances of polymer and fiber modified asphalt mixtures RID A-6382-2009. Indian J. Eng. Mater. Sci. 14 (2), 151 (2007).

    CAS  Google Scholar 

  10. S. Tayfur, H. Ozen, and A. Aksoy: Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr. Build. Mater. 21 (2), 328 (2007).

    Article  Google Scholar 

  11. H.L. Von Quintus, J. Mallela, and M. Buncher: Quantification of effect of polymer-modified asphalt on flexible pavement performance. Transp. Res. Rec. 2001, 141 (2007).

    Article  Google Scholar 

  12. K. Stuart, W. Mogawer, and J. Youtcheff: Performance of modified asphalt binders with identical high-temperature performance grades but varied polymer chemistries. Bituminous Binders 1875, 33 (2004).

    CAS  Google Scholar 

  13. G. Airey: Styrene butadiene styrene polymer modification of road bitumens. J. Mater. Sci. 39 (3), 951 (2004).

    Article  CAS  Google Scholar 

  14. B. Sengoz and G. Isikyakar: Analysis of styrene-butadiene-styrene polymer-modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 150 (2), 424 (2008).

    Article  CAS  Google Scholar 

  15. A. Ait-Kadi, B. Brahimi, and M. Bousmina: Polymer blends for enhanced asphalt binders. Polym. Eng. Sci. 36 (12), 1724 (1996).

    Article  CAS  Google Scholar 

  16. U. Isacsson and X. Lu: Characterization of bitumens modified with SEBS, EVA and EBA polymers. J. Mater. Sci. 34 (15), 3737 (1999).

    Article  CAS  Google Scholar 

  17. J.W.H. Oliver: Changes in the chemical composition of Australian bitumens. Road Mater. Pavement Des. 10 (3), 569 (2009).

    Article  Google Scholar 

  18. J.G. Speight: The Chemistry and Technology of Petroleum, 4th ed. (CRC Press/Taylor & Francis, Boca Raton, 2007).

    Google Scholar 

  19. A. Kolbanov and A. Rudenski: Influence of solid paraffins on structural and rheological properties of bitumens. Colloid J. 30 (4), 390 (1968).

    Google Scholar 

  20. J. Planche, D. Martin, C. Rey, L. Champion, and J. Gerard: Evaluation of the Physical Hardening of Bitumens in the Cold: Another Method for Measuring their Paraffin Content (A A Balkema, BR Rotterdam, Netherlands, 1997).

    Google Scholar 

  21. D. Lesueur, J. Gerard, P. Claudy, J. Letoffe, J. Planche, and D. Martin: A structure-related model to describe asphalt linear viscoelasticity. J. Rheol. 40 (5), 813 (1996).

    Article  CAS  Google Scholar 

  22. M. Reading, D. Elliott, and V. Hill: A new approach to the calorimetric investigation of physical and chemical-transitions. J. Therm. Anal. 40 (3), 949 (1993).

    Article  CAS  Google Scholar 

  23. B. Wunderlich, Y. Jin, and A. Boller: Mathematical description of differential scanning calorimetry based on periodic temperature modulation. Thermochim. Acta 238, 277 (1994).

    Article  CAS  Google Scholar 

  24. M. Garcia-Morales, P. Partal, F. Navarro, and C. Gallegos: Effect of waste polymer addition on the rheology of modified bitumen. Fuel 85 (7–8), 936 (2006).

    Article  CAS  Google Scholar 

  25. P. Claudy, J. Letoffe, G.N. King, and J. Planche: Characterization of road bitumen by differential scanning calorimetry (DSC). Thermo optical analysis (TOA). Correlation between physical properties and DSC results. Correlation entre proprietes physiques et resultats ACD. Bulletin de Liaison des Laboratoires des Ponts et Chaussees (177), 45 (1992).

    Google Scholar 

  26. P. Claudy, J.M. Letoffe, G.N. King, and J.P. Plancke: Characterization asphalts cements by thermomicroscopy differential scanning calorimetry: Correlation classic physical properties. Fuel Sci. Technol. Int. 10 (4–6), 735 (1992).

    Article  CAS  Google Scholar 

  27. D. Lesueur: The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification. Adv. Colloid Interface Sci. 145 (1–2), 42 (2009).

    Article  CAS  Google Scholar 

  28. H. Leaderman: Elastic and Creep Properties of Filamentous Materials (Textile Foundation, Washington District of Columbia, 1943).

    Google Scholar 

  29. J.D. Ferry: Viscoelastic Properties of Polymers (Wiley, New York, NY, 1980).

    Google Scholar 

  30. K.G.N.C. Alwis and C.J. Burgoyne: Time-temperature superposition determines stress-rupture aramid fibers. Appl. Compos. Mater. 13 (4), 249 (2006).

    Article  CAS  Google Scholar 

  31. R.G. Arridge: Mechanics of Polymers (Clarendon Press, Oxford, 1975).

    Google Scholar 

  32. V.S. Chevali, D.R. Dean, and G.M. Janowski: Flexural creep behavior of discontinuous thermoplastic composites: Nonlinear viscoelastic modeling and time–temperature–stress superposition. Composites Part A 40 (6–7), 870 (2009).

    Article  Google Scholar 

  33. J.D. Menczel and R.B. Prime: Thermal Analysis of Polymers: Fundamentals and Applications (John Wiley, Hoboken, NJ, 2009).

    Book  Google Scholar 

  34. V.M. Gurp and J. Palmen: Time-temperature superposition of polymer blends. Rheology Bulletin 67 (1), 5 (1998).

    Google Scholar 

Download references

Acknowledgment

This work was partially funded by the Spanish Ministerio de Educacion y Ciencia MTM2008-00166 and MTM2011-22392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Artiaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Paz, J., Gracia-Fernández, C., Gómez-Barreiro, S. et al. Study of bitumen crystallization by temperature-modulated differential scanning calorimetry and rheology. Journal of Materials Research 27, 1410–1416 (2012). https://doi.org/10.1557/jmr.2012.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.73

Navigation