Skip to main content
Log in

TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This article describes the multifunctional applications of TiO2. It substantiates the universality of the anodization process to grow well-ordered TiOxnanotube (T–NT) of hollow cylindrical shape on a variety of planar and nonplanar substrates. It highlights an approach to effectively bring down the cost of anodization via utilization of a small volume of electrolyte. The multifunctionality of these nanostructures is highlighted through representative examples that illustrate wide ranging optical, electronic, and catalytic properties. Combining the T–NT with other materials such as metals and photoactive additives to form composite nanostructures has been shown to benefit photocatalysis, photovoltaics, biological processes, and environment-related applications. This article also demonstrates the applicability of T–NT as an agent to produce dissolved oxygen in simulated blood—an application that can assist in the development of artificial lungs. Key results from the research group, collaborations, and recent articles are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1.
FIG. 1.
SCHEME 2.
FIG. 2.
FIG. 3.
SCHEME 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE I.
SCHEME 4.

Similar content being viewed by others

References

  1. N.S. Lewis and D.G. Nocera: Powering the planet: Chemical challenges in solar energy utilization. Proc. Nat. Acad. Sci. U.S.A. 103, 15729 (2006).

    Article  CAS  Google Scholar 

  2. A. Mills, R.H. Davies, and D. Worsley: Water-purification by semiconductor photocatalysis. Chem. Soc. Rev. 22, 417 (1993).

    Article  CAS  Google Scholar 

  3. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  4. A. Fujishima, T.N. Rao, and D.A. Tryk: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).

    Article  CAS  Google Scholar 

  5. D. Bahnemann: Photocatalytic water treatment: Solar energy applications. Sol. Energy 77, 445 (2004).

    Article  CAS  Google Scholar 

  6. P.D. Cozzoli, E. Fanizza, R. Comparelli, M.L. Curri, A. Agostiano, and D. Laub: Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis. J. Phys. Chem. B 108, 9623 (2004).

    Article  CAS  Google Scholar 

  7. V.M. Aroutiounian, V.M. Arakelyan, and G.E. Shahnazaryan: Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Sol. Energy 78, 581 (2005).

    Article  CAS  Google Scholar 

  8. K. Demeestere, J. Dewulf, and H.V. Langenhove: Heterogeneous photocatalysis as an advanced oxidation process for abatement of chlorinated, monocyclic aromatic and sulfurous volatile organic compounds in air: State of the art. Crit. Rev. Environ. Sci. Technol. 37, 489 (2007).

    Article  CAS  Google Scholar 

  9. A. Fujishima, X. Zhang, and D.A. Tryk: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).

    Article  CAS  Google Scholar 

  10. Q. Zhang, H. Xu, and W. Yan: Highly ordered TiO2 nanotube arrays: Recent advances in fabrication and environmental applications-a review. Nanosci. Nanotechnol. Lett. 4, 505 (2012).

    Article  CAS  Google Scholar 

  11. A.E.R. Mohamed and S. Rohani: Modified TiO2 nanotube arrays (TNTAs): Progressive strategies towards visible light responsive photoanode, a review. Energy Environ. Sci. 4, 1065 (2011).

    Article  CAS  Google Scholar 

  12. A. Ghicov and P. Schmuki: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 45, 2791 (2009).

    Article  CAS  Google Scholar 

  13. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, and C.A. Grimes: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Article  CAS  Google Scholar 

  14. A. Kar, P. Ryan, and V.R. Subramanian: Photoelectrochemical responses of anodized titanium oxide films. J. Mater. Res. 25, 82 (2010).

    Article  CAS  Google Scholar 

  15. Y. Sohn, Y. Smith, M. Misra, and V. Subramanian: Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl. Catal., B 84, 372 (2008).

    Article  CAS  Google Scholar 

  16. H.F. Zhuang, C.J. Lin, Y.K. Lai, L. Sun, and J. Li: Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735 (2007).

    Article  CAS  Google Scholar 

  17. A. Watcharenwong, W. Chanmanee, N.R. de Tacconi, C.R. Chenthamarakshan, P. Kajitvichyanukul, and K. Rajeshwar: Self-organized TiO2 nanotube arrays by anodization of Ti substrate: Effect of anodization time, voltage and medium composition on oxide morphology and photoelectrochemical response. J. Mater. Res. 22, 3186 (2007).

    Article  CAS  Google Scholar 

  18. Y. Yang, X.H. Wang, and L.T. Li: Synthesis and photovoltaic application of high aspect-ratio TiO2 nanotube arrays by anodization. J. Am. Ceram. Soc. 91, 3086 (2008).

    Article  CAS  Google Scholar 

  19. Y.K. Lai, L. Sun, Y.C. Chen, H.F. Zhuang, C.J. Lin, and J.W. Chin: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153, D123 (2006).

    Article  CAS  Google Scholar 

  20. S. Yoriya and C.A. Grimes: Self-assembled TiO2 nanotube arrays by anodization of titanium in diethylene glycol: Approach to extended pore widening. Langmuir 26, 417 (2010).

    Article  CAS  Google Scholar 

  21. A. Kar, Y.R. Smith, and V. Subramanian: Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ. Sci. Technol. 43, 3260 (2009).

    Article  CAS  Google Scholar 

  22. V. Jaeger, W. Wilson, and V. Subramanian: Photodegradation of methyl orange and 2,3-butanedione on titanium-dioxide nanotube arrays efficiently synthesized on titanium coils. Appl. Catal., B 110, 6 (2011).

    Article  CAS  Google Scholar 

  23. Y.R. Smith and V. Subramanian: Heterostructural composites of TiO2 mesh-TiO2 nanoparticles photosensitized with CdS: A new flexible photoanode for solar cells. J. Phys. Chem. C 115, 8376 (2011).

    Article  CAS  Google Scholar 

  24. Y. Smith, A. Kar, and V.R. Subramanian: Investigation of physicochemical parameters that influence photocatalytic degradation of methyl orange over TiO2 nanotubes. Ind. Eng. Chem. Res. 48, 10268 (2009).

    Article  CAS  Google Scholar 

  25. S.K. Mohapatra, M. Misra, V.K. Mahajan, and K.S. Raja: A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J. Catal. 246, 362 (2007).

    Article  CAS  Google Scholar 

  26. V. Subramanian, Z. Ni, E.G. Seebauer, and R.I. Masel: Synthesis of high-temperature titania-alumina supports. Ind. Eng. Chem. Res. 45, 3815 (2006).

    Article  CAS  Google Scholar 

  27. X. Xiao, K. Quyang, R. Liu, and J. Liang: Anatase type titania nanotube arrays direct fabricated by anodization without annealing. Appl. Surf. Sci. 255, 3659 (2009).

    Article  CAS  Google Scholar 

  28. A. Matthew: The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am. Mineral. 61, 429 (1976).

    Google Scholar 

  29. S-J. Kim, S-D. Park, and Y.H. Jeong: Homogeneous precipitation of TiO2 ultra fine powders from aqueous TiOCl2 solution. J. Am. Ceram. Soc. 82, 927 (1999).

    Article  CAS  Google Scholar 

  30. S. Palmas, D.A. Pozzo, and M. Mascia: Photo-electrochemical behavior at different wavelengths of electrochemically obtained TiO2 nanotubes. J. Appl. Electrochem. 42, 745 (2012).

    Article  CAS  Google Scholar 

  31. L.X. Sang, Z.Y. Zhang, G.M. Bai, C.X. Du, and C.F. Ma: A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode. Int. J. Hydrogen Energy 37, 854 (2012).

    Article  CAS  Google Scholar 

  32. S.A. Borkar and S.R. Dharwadkar: Effect of microwave processing on polymorphic transformation of TiO2. Ceram. Int. 30, 509 (2004).

    Article  CAS  Google Scholar 

  33. V.B. Patil, G.S. Shahane, D.S. Sutrave, B.T. Raut, and L.P. Deshmukh: Photovoltaic properties of n-CdS1−xTex thin film/polysulphide photoelectrochemical solar cells prepared by chemical bath deposition. Thin Solid Films 446, 1 (2004).

    Article  CAS  Google Scholar 

  34. Q. Ma and S.J. Liu: Significantly enhanced structural and thermal stability of anodized anatase nanotube arrays induced by tensile strain. Electrochim. Acta 56, 7596 (2011).

    Article  CAS  Google Scholar 

  35. R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveira, S. Fujimoto, H. Kisch, and P. Schmuki: Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 87 243114_1 (2005).

    Article  CAS  Google Scholar 

  36. Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. Tryk, T. Murakami, and A. Fujishima: Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112, 253 (2008).

    Article  CAS  Google Scholar 

  37. Z.Y. Liu, X.T. Zhang, S. Nishimoto, T. Murakami, and A. Fujishima: Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42, 8547 (2008).

    Article  CAS  Google Scholar 

  38. Y. Xie: Photoelectrochemical application of nanotubular titania photoanode. Electrochim. Acta 51, 3399 (2006).

    Article  CAS  Google Scholar 

  39. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S.M. Zakeeruddin, and M. Grtzel: Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS Nano 2, 1113 (2008).

    Article  CAS  Google Scholar 

  40. T. Maiyalagan, B. Viswanathan, and U.V. Varadaraju: Electro-oxidation of methanol on TiO2 nanotube supported platinum electrodes. J. Nanosci. Nanotechnol. 6, 2067 (2006).

    Article  CAS  Google Scholar 

  41. M. Wang, D.J. Guo, and H.L. Li: High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178, 1996 (2005).

    Article  CAS  Google Scholar 

  42. S. Murugesan, Y.R. Smith, and V. Subramanian: Hydrothermal synthesis of Bi12TiO20 nanostructures using anodized TiO2 nanotubes and its application in photovoltaics. J. Phys. Chem. Lett. 1, 1631 (2010).

    Article  CAS  Google Scholar 

  43. A.J. Bard and M.A. Fox: Artificial photosynthesis - solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141 (1995).

    Article  CAS  Google Scholar 

  44. A. Kudo, H. Kato, and S. Nakagawa: Water splitting into H2 and O2 on new Sr2M2O7 (M = Nb and Ta) photocatalysts with layered perovskite structures: Factors affecting the photocatalytic activity. J. Phys. Chem. B 104, 571 (2000).

    Article  CAS  Google Scholar 

  45. Z.G. Zou, J.H. Ye, and H. Arakawa: Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. Int. J. Hydrogen Energy 28, 663 (2003).

    Article  CAS  Google Scholar 

  46. R. Abe, M. Higashi, Z.G. Zou, K. Sayama, and Y. Abe: Photocatalytic water splitting into H2 and O2 over R2Ti2O7 (R = Y, rare earth) with pyrochlore structure. Chem. Lett. 33, 954 (2004).

    Article  CAS  Google Scholar 

  47. N.G. Dhere and A.H. Jahagirdar: Photoelectrochemical water splitting for hydrogen production using combination of CIGS2 solar cell and RuO2 photocatalyst. Thin Solid Films 480–481, 462–465 (2005).

    Article  CAS  Google Scholar 

  48. J. Nowotny, T. Bak, M.K. Nowotny, and L.R. Sheppard: TiO2 surface active sites for water splitting. J. Phys. Chem. B 110, 18492 (2006).

    Article  CAS  Google Scholar 

  49. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J.M. Thomas: Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production. Catal. Today 122, 51 (2007).

    Article  CAS  Google Scholar 

  50. N.K. Allam and M.A. El-Sayed: Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: Structural and optical properties. J. Phys. Chem. C 114, 12024 (2009).

    Article  CAS  Google Scholar 

  51. Y.K. Li, H.M. Yu, W. Song, G.F. Li, B.L. Yi, and Z.G. Shao: A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation. Int. J. Hydrogen Energy 36, 14374 (2012).

    Article  CAS  Google Scholar 

  52. Z. Zhang, M.F. Hossain, and T. Takahashi: Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int. J. Hydrogen energy 35, 8528 (2010).

    Article  CAS  Google Scholar 

  53. W. Nam, S. Oh, H. Joo, S. Sarp, J. Cho, B.W. Nam, and J. Yoon: Preparation of anodized TiO2 photoanode for photoelectrochemical hydrogen production using natural seawater. Sol. Energy Mater. Sol. Cells 94, 1809 (2010).

    Article  CAS  Google Scholar 

  54. Y. Sun, K.P. Yan, G.X. Wang, W. Guo, and T.L. Ma: Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J. Phys. Chem. C 115, 12844 (2011).

    Article  CAS  Google Scholar 

  55. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 (2005).

    Article  CAS  Google Scholar 

  56. J.M. Macak, A. Ghicov, R. Hahn, H. Tsuchiya, and P. Schmuki: Photoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses. J. Mater. Res. 21, 2824 (2006).

    Article  CAS  Google Scholar 

  57. J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza, and P. Schmuki: Self-organized nanotubular TiO2 matrix as support for dispersed Pt/Ru nanoparticles: Enhancement of the electrocatalytic oxidation of methanol. Electrochem. Commun. 7, 1417 (2005).

    Article  CAS  Google Scholar 

  58. C. Li, J. Yuan, B. Han, L. Jiang, and W.F. Shangguan: TiO2 nanotubes incorporated with CdS for photocatalytic hydrogen production from splitting water under visible light irradiation. Int. J. Hydrogen Energy, 35, 7073 (2010).

    Article  CAS  Google Scholar 

  59. H.A. Hamedani, N.K. Allam, H. Garmestani, and M.A. El-Sayed: Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J. Phys. Chem. C 115, 13480 (2011).

    Article  CAS  Google Scholar 

  60. P. Roy, C. Das, K.S. Lee, R. Hahn, T. Ruff, M. Moll, and P. Schmuki: J. Phys. Chem. C 114, 12024 (2010).

    Article  CAS  Google Scholar 

  61. W. Nam, S. Oh, H. Joo, and J. Yoon: Preparation of Pt deposited nanotubular TiO2 as cathodes for enhanced photoelectrochemical hydrogen production using seawater electrolytes. J. Sol. State Chem. 184, 2920 (2011).

    Article  CAS  Google Scholar 

  62. R.P. Antony, T. Mathews, C. Ramesh, N. Murugesan, A. Dasgupta, S. Dhara, S. Dash, and A.K. Tyagi: Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization. Int. J. Hydrogen Energy 37, 8268 (2012).

    Article  CAS  Google Scholar 

  63. K. Raja, Y. Smith, N. Kondamudi, A. Manivannan, M. Misra, and V. Subramanian: CO2 photoreduction in the liquid phase over Pd-supported on TiO2 nanotube and bismuth titanate photocatalysts. Electrochem. Solid State Lett. 14, F5 (2010).

    Article  CAS  Google Scholar 

  64. H.Y. Wang, Y.C. Yang, J.H. Wei, L. Le, Y. Liu, C.X. Pan, P.F. Fang, R. Xiong, and J. Shi: Effective photocatalytic properties of N doped titanium dioxide nanotube arrays prepared by anodization. React. Kinet. Mech. Catal. 106, 341 (2012).

    Article  CAS  Google Scholar 

  65. C. Nasr, P.V. Kamat, and S. Hotchandani: Photoelectrochemistry of composite semiconductor thin films. Photosensitization of the SnO2/TiO2 coupled system with a ruthenium polypyridyl complex. J. Phys. Chem. B 102, 10047 (1998).

    Article  CAS  Google Scholar 

  66. V. Subramanian, E.E. Wolf, and P.V. Kamat: Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105, 11439 (2001).

    Article  CAS  Google Scholar 

  67. L.J. Li, Z.Q. Zhou, J.L. Lei, J.X. He, S.T. Zhang, and F.S. Pan: Highly ordered anodic TiO2 nanotube arrays and their stabilities as photo(electro)catalysts. Appl. Surf. Sci. 258, 3647 (2012).

    Article  CAS  Google Scholar 

  68. Y. Yao, K. Li, S. Chen, J.P. Jia, Y.L. Wang, and H.W. Wang: Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chem. Eng. J. 187, 29 (2012).

    Article  CAS  Google Scholar 

  69. G.H. Liu, K.Y. Wang, N. Hoivik, and H. Jakobsen: Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Energy Mater. Sol. Cells 98, 24 (2012).

    Article  CAS  Google Scholar 

  70. A.G. Kontos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, and P. Falaras: Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes. Chem. Phys. Lett. 490, 58 (2010).

    Article  CAS  Google Scholar 

  71. A.Y. Zhang, M.H. Zhou, L. Han, and Q.X. Zhou: Combined potential of three catalysis types on TiO2 nanotube (TNT)/Ti and nanoparticle (TNP)/Ti photoelectrodes: A comparative study. Appl. Catal. A 385, 114 (2010).

    Article  CAS  Google Scholar 

  72. K. Onoda and S. Yoshikawa: Applications of anodized TiO2 films for environmental purifications. Appl. Catal. B 80, 277 (2008).

    Article  CAS  Google Scholar 

  73. N. Wang, X.Y. Li, Y.X. Wang, X. Quan, and G.H. Chen: Evaluation of bias potential enhanced photocatalytic degradation of 4-chlorophenol with TiO2 nanotube fabricated by anodic oxidation method. Chem. Eng. J. 146, 30 (2009).

    Article  CAS  Google Scholar 

  74. S. Sreekantan, R. Hazan, and Z. Lockman: Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method. Thin Solid Films 518, 16 (2009).

    Article  CAS  Google Scholar 

  75. A.G. Kontos, A. Katsanaki, V. Likodimos, T. Maggos, D. Kim, C. Vasilakos, D.D. Dionysiou, P. Schmuki, and P. Falaras: Continuous flow photocatalytic oxidation of nitrogen oxides over anodized nanotubular titania films. Chem. Eng. J. 179, 151 (2012).

    Article  CAS  Google Scholar 

  76. J.C. Cardoso, T.M. Lizier, and M.V.B. Zanoni: Highly ordered TiO2 nanotube arrays and photoelectrocatalytic oxidation of aromatic amine. Appl. Catal. B 99, 96 (2010).

    Article  CAS  Google Scholar 

  77. L. Yu, Z.Y. Wang, L.Y. Shi, S. Yuan, Y. Zhao, J.H. Fang, and W. Deng: Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Appl. Catal. B 113, 318 (2012).

    Article  CAS  Google Scholar 

  78. H. Wender, A.F. Feil, L.B. Diaz, C.S. Ribeiro, G.J. Machado, P. Migowski, D.E. Weibel, J. Dupont, and S.R. Teixeira: Self-organized TiO2 nanotube arrays: Synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl. Mater. Interfaces 3, 1359 (2011).

    Article  CAS  Google Scholar 

  79. X. Liu, Z.Q. Liu, S.X. Hao, and W. Chu: Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition. Mater. Lett. 80, 66 (2012).

    Article  CAS  Google Scholar 

  80. X.Y. Li, X.J. Zou, Z.P. Qu, Q.D. Zhao, and L.Z. Wang: Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere 83, 674 (2011).

    Article  CAS  Google Scholar 

  81. S.I. In, P.C.K. Vesborg, B.L. Abrams, Y.D. Hou, and I. Chorkendorff: A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules. J. Photochem. Photobiol., A 222, 258 (2011).

    Article  CAS  Google Scholar 

  82. D. Kim, S. Fujimoto, P. Schmuki, and H. Tsuchiya: Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys. Electrochem. Commun. 10, 910 (2008).

    Article  CAS  Google Scholar 

  83. H.C. Liang and X.Z. Li: Visible-induced photocatalytic reactivity of polymer-sensitized titania nanotube films. Appl. Catal. B 86, 8 (2009).

    Article  CAS  Google Scholar 

  84. J. Lin, R.L. Zong, M. Zhou, and Y.F. Zhu: Photoelectric catalytic degradation of methylene blue by C60-modified TiO2 nanotube array. Appl. Catal. B 89, 425 (2009).

    Article  CAS  Google Scholar 

  85. X.S. Zhou, B. Jin, S.S. Zhang, H.J. Wang, H. Yu, and F. Peng: Preparation of boron and phosphor co-doped TiO2 nanotube arrays and their photoelectrochemical property. Electrochem. Commun. 19, 127 (2012).

    Article  CAS  Google Scholar 

  86. V. Subramanian: Nanostructured semiconductor composites for solar cells. Interface 16, 32 (2007).

    CAS  Google Scholar 

  87. G.K. Mor, O.K. Varghese, M. Paulose, and C.A. Grimes: Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films. Adv. Funct. Mater. 15, 1291 (2005).

    Article  CAS  Google Scholar 

  88. Y. Zhang, D.J. Wang, S. Pang, Y.H. Lin, T.F. Jiang, and T.F. Xie: A study on photo-generated charges property in highly ordered TiO2 nanotube arrays. Appl. Surf. Sci. 256, 7217 (2010).

    Article  CAS  Google Scholar 

  89. R. Beranek, J.M. Macak, M. Gartner, K. Meyer, and P. Schmuki: Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochim. Acta 54, 2640 (2009).

    Article  CAS  Google Scholar 

  90. A. Tighineanu, T. Ruff, S. Albu, R. Hahn, and P. Schmuki: Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 494, 260 (2010).

    Article  CAS  Google Scholar 

  91. W. Chanmanee, A. Watcharenwong, R.C. Chenthamarakshan, P. Kajitvichyanukul, N.R. de Tacconi, and K. Rajeshwar: Formation and characterization of self-organized TiO2 nanotube arrays by pulse anodization. J. Am. Chem. Soc. 130, 965 (2008).

    Article  CAS  Google Scholar 

  92. Z.Y. Liu, V. Subramania, and M. Misra: Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells. J. Phys. Chem. C 113, 14028 (2009).

    Article  CAS  Google Scholar 

  93. M.D. Ye, X.K. Xin, C.J. Lin, and Z.Q. Lin: High efficiency dye-sensitized solar cells based on hierarchically structured nanotubes. Nano Lett. 11, 3214 (2011).

    Article  CAS  Google Scholar 

  94. Y. Xie, G. Ali, S.H. Yoo, and S.O. Cho: Sonication-assisted synthesis of CdS quantum-dot-sensitized TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2910 (2010).

    Article  CAS  Google Scholar 

  95. D.D. Li, P.C. Chang, C.J. Chien, and J.G. Lu: Applications of tunable TiO2 nanotubes as nanotemplate and photovoltaic device. Chem. Mater. 22, 5707 (2010).

    Article  CAS  Google Scholar 

  96. X.F. Gao, W.T. Sun, Z.D. Hu, G. Ai, Y.L. Zhang, S. Feng, F. Li, and L.M. Peng: An efficient method to form heterojunction CdS/TiO2 photoelectrodes using highly ordered TiO2 nanotube array films. J. Phys. Chem. C 113, 20481 (2009).

    Article  CAS  Google Scholar 

  97. Y.R. Smith, V. Subramanian, and B. Viswanathan: Photo-electrochemical and photo-catalytic conversion of carbon dioxide, in Photo-Electrochemistry and Photobiology for Sustainability, Chapter 9, edited by S. Kaneco, B. Viswanathan, and H. Katsumata (Bentham Science Publishers, Bangalore, India, 2010).

    Google Scholar 

  98. K. Koci, L. Obalova, L. Matejova, D. Placha, Z. Lacny, J. Jirkovsky, and O. Solcova: Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B 89, 494 (2009).

    Article  CAS  Google Scholar 

  99. V.P. Indrakanti, H.H. Schobert, and J.D. Kubicki: Quantum mechanical modeling of CO2 interactions with irradiated stoichiometric and oxygen-deficient anatase TiO2 surfaces: Implications for the photocatalytic reduction of CO2. Energy Fuels 23, 5247 (2009).

    Article  CAS  Google Scholar 

  100. O.K. Varghese, M. Paulose, T.J. LaTempa, and C.A. Grimes: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).

    Article  CAS  Google Scholar 

  101. X.J. Feng, J.D. Sloppy, T.J. LaTemp, M. Paulose, S. Komarneni, N.Z. Bao, and C.A. Grimes: Synthesis and deposition of ultrafine Pt nanoparticles within high aspect ratio TiO2 nanotube arrays: Application to the photocatalytic reduction of carbon dioxide. J. Mater. Chem. 21, 13429 (2011).

    Article  CAS  Google Scholar 

  102. C.C. Yang, T.H. Yu, B. Linden, J.C.S. Wu, and G. Mul: Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? Am. Chem. J. 132, 8398 (2010).

    Article  CAS  Google Scholar 

  103. N. Baram, D. Starosvetsky, J. Starosvetsky, M. Epshtein, R. Armon, and Y. Ein-Eli: Photocatalytic inactivation of microorganisms using nanotubular TiO2. Appl. Catal., B 101, 212 (2011).

    Article  CAS  Google Scholar 

  104. Y. Hou, X.Y. Li, Q.D. Zhao, G.H. Chen, and C.L. Rastor: Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation. Environ. Sci. Technol. 46, 4042 (2012).

    Article  CAS  Google Scholar 

  105. C.K. Yu, K.H. Hu, S.H. Wang, T. Hsu, H.T. Tsai, C.C. Chen, S.M. Liu, T.Y. Lin, and C.H. Chen: Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media. Appl. Phys. A 102, 271 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work highlights the contributions from the works of Subramanian group members—York smith, Sankaran Murugesan, Yon Sun Sohn, Ryan Pando, Winn Wilson, Bratindranath Mukerjee, and Vance Jaeger. The Subramanian group would like to acknowledge DOE and NSF for the funding that led to the completion of this work. The Dey group acknowledges the assistance of and availability of commercial-scale processing tools in Praxair Electronics (Pheonix, AZ) for the timely completion of Tara Collins’ honors thesis on “Next Generation of Anodic Coatings” and support of the electron microscopy center at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaidyanathan Ravi Subramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, V.R., Sarker, S., Yu, B. et al. TiO2 nanotubes and its composites: Photocatalytic and other photo-driven applications. Journal of Materials Research 28, 280–293 (2013). https://doi.org/10.1557/jmr.2012.392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.392

Navigation