Skip to main content

Advertisement

Log in

Biocomposites based on collagen and phosphorylated dextran for bone regeneration

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The aim of this study was the development of biocomposite scaffolds (membranes and matrices) based on natural polymers used for bone tissue engineering. The novelty featured in this paper is the use of phosphorylated dextran (PDex) as natural component in collagen-based biocomposites. The PDex both in acid form and as mixed salts of Mg–Na, Zn–Na, Ca-Na was characterized by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, potentiometric and conductometric titration and energy dispersive x-ray spectroscopy (EDX) analysis. The biocomposite scaffolds were obtained by freeze-drying as matrices and by free-drying as membranes with specific microporous morphological structures that depended on drying process of collagen gels with PDex. The biocomposites were physical–chemical characterized by differential scanning calorimetry (DSC) and, water and water vapor absorption. The biocompatibility was evaluated in vitro with human osteosarcoma MG 63 cell lines. The results showed that biocompatibility was improved by the use of PDex as mixed salts of Mg–Na, Zn–Na, Ca-Na in collagen biocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE I.
TABLE II.
FIG. 7.
FIG. 8.
TABLE III.
TABLE IV.
TABLE V.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. D. Iordachescu, A. Campean, and C. Stan: Extracelular Matrix Modeling. Applications in Tissue Engineering (Pro-Transilvania Press, Bucharest, Romania, 2004) p. 15.

    Google Scholar 

  2. T. Yoshida, Y. Yasuda, T. Uryu, H. Nakashima, N. Yamamoto, T. Mimura, and Y. Kaneko: Synthesis and in vitro inhibitory effect of L-glycosyl-branched curdlan sulfates on AIDS virus infection. Macromolecules 27, 6272 (1994).

    Article  CAS  Google Scholar 

  3. Y. Gao, A. Fukuda, K. Katsuraya, Y. Kaneko, T. Mimura, H. Nakashima, and T. Uryu: Synthesis of regioselective substituted curdlan sulfates with medium molecular weights and their specific anti-HIV-1 activities. Macromolecules 30, 3224 (1997).

    Article  CAS  Google Scholar 

  4. Y. Gao, K. Katsuraya, Y. Kaneko, T. Mimura, H. Nakashima, and T. Uryu: Synthesis, enzymatic hydrolysis, and anti-HIV activity of AZT−spacer−curdlan sulfates. Macromolecules 32, 8319 (1999).

    Article  CAS  Google Scholar 

  5. K. Koumoto, K. Sakurai, S. Shinkai, and T. Kunitake: Chemical modification of curdlan: Characteristic complexation with polynucleotides by control of the molecular weight. Polym. Preprints 43, 721 (2002).

    CAS  Google Scholar 

  6. K.J. Jeon, K. Katsuraya, T. Inazu, Y. Kaneko, T. Mimura, and T. Uryu: NMR spectroscopic detection of interactions between a HIV protein sequence and a highly anti-HIV active curdlan sulfate. J. Am. Chem. Soc. 122, 125 (2000).

    Article  CAS  Google Scholar 

  7. S. Shimabayashi, N. Hashimoto, H. Kawamura, and T. Uno: Formation of hydroxyapatite in the presence of phosphorylated and sulfated polymer in an aqueous phase. Mineral Scale Formation and Inhibition, edited by A. Zahid (Plenum Press, New York, NY, 1995) p. 77.

    Google Scholar 

  8. A. Ficai, E. Andronescu, V. Trandafir, C. Ghitulica, and G. Voicu: Collagen/hydroxyapatite composite obtained by electric field orientation. Mater. Lett. 64, 541 (2010).

    Article  CAS  Google Scholar 

  9. A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, and D. Ficai: The influence of collagen support and ionic species on the morphology of collagen/hydroxyapatite composite materials. Mater. Charact. 61, 402 (2010).

    Article  CAS  Google Scholar 

  10. A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, B.S. Vasile, D. Ficai, and V. Trandafir: Self assembled collagen/hydroxyapatite composite materials. Chem. Eng. J. 160, 794 (2010).

    Article  CAS  Google Scholar 

  11. M. Ficai, E. Andronescu, D. Ficai, G. Voicu, and A. Ficai: Synthesis and characterization of COLL-PVA/HA hybrid materials with stratified morphology. Colloids Surf., B 81, 614 (2010).

    Article  CAS  Google Scholar 

  12. P.L. Granja, M.A. Barbosa, L. Pouysegu, B. De Jeso, and C. Baquey: Cellulose Phosphates as Biomaterials. Frontiers in biomedical polymer applications, edited by R.M. Ottenbrite (Technomic Press, Lancaster, PA, 1999) p. 195.

    Google Scholar 

  13. D.B. Volkin, P.K. Tsai, J.M. Dabora, J.O. Gress, C.J. Burke, R.J. Linhardt, and C.R. Middaugh: Physical stabilization of acidic fibroblast growth factor by polyanions. Arch. Biochem. Biophys. 300(1), 30 (1993).

    Article  CAS  Google Scholar 

  14. T. Heinze, T. Liebert, B. Heublein, and S. Hornig: Functional polymers base on dextran. Adv. Polym. Sci. 205, 199 (2006).

    Article  CAS  Google Scholar 

  15. J.F. Robyt: Dextran. Encyclopedia of polymer science and technology, edited by I. Kroschwitz (John Wiley & Sons, New York, NY, 1987) p. 752.

    Google Scholar 

  16. W. Jing, L. Wu, Y. Lin, L. Liu, W. Tang, and W. Tian: Odontogenic differentiation of adipose-derived stem cells for tooth regeneration: Necessity, possibility, and strategy. Med. Hypotheses 70, 540 (2008).

    Article  CAS  Google Scholar 

  17. M.T. Duailibi, S.E. Duailibi, C.S. Young, J.D. Bartlett, J.P. Vacanti, and P.C. Yelick: Bioengineered teeth from cultured rat tooth bud cells. J. Dent. Res. 83, 523 (2004).

    Article  CAS  Google Scholar 

  18. D. Sacco, D. Klett-Zygmunt, and E. Dellacherie: A re-investigation of the phosphorylation of dextran with phosphoric acid: Evidence for the formation of different types of phosphate moieties. Carbohydr. Res. 184, 193 (1988).

    Article  CAS  Google Scholar 

  19. D. Sacco, D. Klett-Zygmunt, C. Vigneron, and E. Dellacherie: Covalent fixation of hemoglobin to dextran phosphates decreases its oxygen affinity. Biochim. Biophys. Acta 1041, 279 (1990).

    Article  CAS  Google Scholar 

  20. S.M. Spaltro and M.P. Aronson: Phosphorylated polyhydroxy compounds for tartar control. Patent No 5 12 599, (1992).

    Google Scholar 

  21. S. Suzuki, M. Suzuki, and T. Matsumoto: Polysaccharides bonded with phosphoric acid and fatty acid esters. Patent No 50 054 685, (1975).

    Google Scholar 

  22. S. Suzuki, M. Suzuki, and T. Mikami: Esters of polysaccharides with phosphoric acid and palmitic acid. Patent No JP 75–104,626, (1977).

    Google Scholar 

  23. S.B. Makarova, T.A. Aptova, Z.M. Litvak, and T.F. Raldugina: Ion exchanger. Patent No 59 768, (1978).

    Google Scholar 

  24. T. Sato, J. Nishimura-Uemura, T. Shimosato, Y. Kawai, H. Kitazawa, and T. Saito: Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups. J. Food Prot. 67, 1719 (2004).

    Article  CAS  Google Scholar 

  25. D.M. Suflet, G.C. Chitanu, and J. Desbrières: Phosphorylated polysaccharides. 2. Synthesis and properties of phosphorylated dextran. Carbohydr. Polym. 82, 1271 (2010).

    Article  CAS  Google Scholar 

  26. D.M. Suflet, G.C. Chitanu, and V.I. Popa: Phosphorylation of polysaccharides. New results on synthesis and characterization of phosphorylated cellulose. React. Funct. Polym. 66, 1240 (2006).

    Article  CAS  Google Scholar 

  27. R.I. Iliescu, E. Andronescu, G. Voicu, A. Ficai, and C.I. Covaliu: Hybrid materials based on montmorillonite and cytostatic drugs: Preparation and characterization. Appl. Clay Sci. 52(1–2), 62–68 (2011).

    Article  CAS  Google Scholar 

  28. V. Trandafir, G. Popescu, M.G. Albu, H. Iovu, and M. Georgescu: Bioproducts Based on Collagen (Ars Docendi Press, Bucharest, Romania, 2007) p. 102.

    Google Scholar 

  29. E. Siapi, T. Mavromoustakos, V. Trandafir, B. Albu, and P. Budrugeac: The use of differential scanning calorimetry to study the effects of gentamycin on fibrous collagenous membranes. Thermochim. Acta 425, 165 (2005).

    Article  CAS  Google Scholar 

  30. M.G. Albu: Collagen Gels and Matrices for Biomedical Applications (Lambert Academic Publishing, Saarbrücken, Germany, 2011) p. 23.

    Google Scholar 

  31. R.K. Purama, P. Goswami, A.T. Khan, and A. Goyal: Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr. Polym. 76, 30 (2009).

    Article  CAS  Google Scholar 

  32. M. Hesse, H. Meier, and B. Zeeh: Spectroscopic Methods in Organic Chemistry (Georg Thieme Verlag Stuttgart Press, New York, NY, 1984) p. 40.

    Google Scholar 

  33. P. Budrugeac, V. Trandafir, and M.G. Albu: The effect of the hydration degree on the hydrotermal and thermo-oxidative stability of some collagenous matrices. J. Therm. Anal. Calorim. 72, 581 (2003).

    Article  CAS  Google Scholar 

  34. Y. Okamoto and K. Saeki: Phase transition on collagen and gelatin. Kolloid Z. Z. Polym. 194, 124 (1964).

    Article  CAS  Google Scholar 

  35. E. Badea, L. Miu, P. Budrugeac, M. Giurginca, A. Mašić, N. Badea, and G. Della Gatta: Study of deterioration of historical parchments by various thermal analysis techniques, complemented by SEM, FTIR, UV-VIS-NIR and unilateral NMR investigations. J. Therm. Anal. Calorim. 91, 17 (2008).

    Article  CAS  Google Scholar 

  36. P. Budrugeac and L. Miu: The suitability of DSC method for damage assessment and certification of historical leathers and parchments. J. Cult. Herit. 9, 146 (2008).

    Article  Google Scholar 

  37. C. Popescu, P. Budrugeac, F.J. Wortmann, L. Miu, D. Demco, and M. Baias: Assessment of collagen-based materials which are supports of cultural and historical objects. Polym. Degrad. Stab. 93, 976 (2008).

    Article  CAS  Google Scholar 

  38. W.K. Loke and E. Khor: Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Biomater. 16, 251 (1995).

    Article  CAS  Google Scholar 

  39. M.G. Albu, M.V. Ghica, A. Ficai, I. Titorencu, and L. Popa: The influence of freeze-drying process on porosity and kinetics release of collagen-doxycycline matrices, edited by L. Albu and V. Deselnicu (Proc. 3rd Int. Conf. Adv. Mat. Syst, Bucharest, Romania, 2010) p. 181.

    Google Scholar 

  40. Gh. Chirita, and M. Chirita: Treatise of Leather and Fur Chemistry and Technology (Gheorghe Asachi Publishing House, Iaşi, Romania, 1999) pp. 142–144.

    Google Scholar 

  41. P. Roach, D. Eglin, K. Rohde, and C.C. Perry: Modern biomaterials: A review—bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 18, 1263 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was financially supported by Project No. 71-147/2007 from The National Centre for Programme Management (CNMP) Bucharest, Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.G. Albu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albu, M., Trandafir, V., Suflet, D. et al. Biocomposites based on collagen and phosphorylated dextran for bone regeneration. Journal of Materials Research 27, 1086–1096 (2012). https://doi.org/10.1557/jmr.2012.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.21

Navigation