Skip to main content
Log in

Effect of processing on Charpy impact toughness of metallic glass matrix composites

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, compact Charpy impact testing was used to investigate the effect of processing history and dendrite morphology of bulk metallic glass matrix composites (BMGMCs) on impact toughness. Composite samples were fabricated via suction casting and semisolid forging, and the results were compared with crystalline alloys in the same geometry. A strong dependence on processing was observed, with samples exhibiting up to a 30-fold increase in impact toughness depending on processing and microstructure. Provided that attention is paid to processing techniques, BMGMCs are shown to have properties that equal or surpass some conventionally used crystalline alloys. These properties invite further exploration of these materials in structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

REFERENCES

  1. A.L. Greer: Metallic glasses. Science 267, 5206 (1995).

    Article  Google Scholar 

  2. J. Schroers: Processing of bulk metallic glass. Adv. Mater. 22, 14 (2010).

    Article  Google Scholar 

  3. G. Kumar, H.X. Tang, and J. Schroers: Nanomoulding with amorphous metals. Nature 457, 7231 (2009).

    Article  Google Scholar 

  4. Y.H. Liu, G. Wang, R.J. Wang, D.W. Zhao, M.X. Pan, and W.H. Wang: Super plastic bulk metallic glasses at room temperature. Science 315, 5817 (2007).

    Google Scholar 

  5. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).

    Article  CAS  Google Scholar 

  6. A. Peker and W.L. Johnson: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).

    Article  Google Scholar 

  7. J. Xu, U. Ramamurty, and E. Ma: The fracture toughness of bulk metallic glasses. JOM 62, 4 (2010).

    Google Scholar 

  8. M.E. Launey, D.C. Hofmann, J.Y. Suh, H. Kozachkov, W.L. Johnson, and R.O. Ritchie: Fracture toughness and crack resistance curve behavior in metallic glass-matrix composites. Appl. Phys. Lett. 94, 241910 (2009).

    Article  Google Scholar 

  9. M.E. Launey, D.C. Hofmann, W.L. Johnson, and R.O. Ritchie: Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proc. Natl. Acad. Sci. U.S.A. 106, 4986 (2009).

    Article  CAS  Google Scholar 

  10. C.C. Hays, C.P. Kim, and W.L. Johnson: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).

    Article  CAS  Google Scholar 

  11. F. Szuecs, C.P. Kim, and W.L. Johnson: Mechanical properties of Zr56.2Ti13.8Nb5.0Cu6.9Ni5.6Be12.5 ductile phase reinforced bulk metallic glass composite. Acta Mater. 49, 1507 (2001).

    Article  CAS  Google Scholar 

  12. D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1086 (2008).

    Article  Google Scholar 

  13. D.C. Hofmann, J.Y. Suh, A. Wiest, M.L. Lind, M.D. Demetriou, and W.L. Johnson: Development of tough, low-density titanium based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U.S.A. 105, 20136 (2008).

    Article  CAS  Google Scholar 

  14. S. Pauly, S. Gorantla, G. Wang, U. Kuhn, and J. Eckert: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).

    Article  CAS  Google Scholar 

  15. Y. Wu, Y. Xiao, G. Chen, C.T. Liu, and Z. Lu: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2270 (2010).

    Google Scholar 

  16. Z. Bian, H. Kato, C. Qin, W. Zhang, and A. Inoue: Cu–Hf–Ti–Ag–Ta bulk metallic glass composites and their properties. Acta Mater. 53, 2037 (2005).

    Article  CAS  Google Scholar 

  17. C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. Inoue: A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Mater. 54, 3713 (2006).

    Article  CAS  Google Scholar 

  18. K.M. Flores, W.L. Johnson, and R.H. Dauskardt: Fracture and fatigue behavior of a Zr-Ti-Nb ductile phase reinforced bulk metallic glass matrix composite. Scr. Mater. 49, 1181 (2003).

    Article  CAS  Google Scholar 

  19. P. Lowhaphandu and J.J. Lewandowski: Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scr. Mater. 38, 1811 (1998).

    Article  CAS  Google Scholar 

  20. J.L. Chen, G. Chen, F. Xu, Y.L. Du, Y.S. Li, and C.T. Liu: Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites. Intermetallics 18, 12 (2010).

    Google Scholar 

  21. K.R. Lim, J.H. Na, J.M. Park, W.T. Kim, and D.H. Kim: Enhancement of plasticity in Ti-based metallic glass matrix composites by controlling characteristic and volume fraction of primary phase. J. Mater. Res. 25, 11 (2010).

    Article  Google Scholar 

  22. J.M. Park, J. Jayaraj, D.H. Kim, N. Mattern, G. Wang, and J. Eckert: Tailoring of in situ Ti-based bulk glassy matrix composites with high mechanical performance. Intermetallics 18, 10 (2010).

    Google Scholar 

  23. S.F. Guo, L. Liu, N. Li, and Y. Li: Fe-based bulk metallic glass matrix composite with large plasticity. Scr. Mater. 62, 6 (2010).

    Google Scholar 

  24. Z. Zhu, H. Zhang, Z. Hu, W. Zhang and A. Inoue: Ta-particulate reinforced Zr-based bulk metallic glass matrix composites with tensile plasticity. Scr. Mater. 62, 278 (2010).

    Article  CAS  Google Scholar 

  25. J.W. Qiao, P. Feng, Y. Zhang, Q.M. Zhang, P.K. Liaw, and G.L. Chen: Quasi-static and dynamic deformation behaviors of in situ Zr-based bulk-metallic-glass-matrix-composites. J. Mater. Res. 25, 12 (2010).

    Article  Google Scholar 

  26. R. Raghavan, P. Murali, and U. Ramamurty: On factors influencing the ductile-to-brittle transition in a bulk metallic glass. Acta Mater. 57, 3332 (2009).

    Article  CAS  Google Scholar 

  27. R. Raghavan, P. Murali, and U. Ramamurty: Ductile to brittle transition in the Zr41.2Ti13.75Cu12.5Ni10Be22.5 bulk metallic glass. Mater. Sci. Eng., A 417, 1 (2006).

    Article  Google Scholar 

  28. H.S. Shin, K.H. Kim, and S.Y. Oh: Fracture behavior of Zr-based metallic glass under impact loading. Int. J. Mod. Phys. B 20, 27 (2006).

    Google Scholar 

  29. H.S. Shin, K.H. Kim, Y.J. Jung, and D.K. Ko: Impact fracture behavior of Zr-based bulk metallic glass using subsize Charpy specimen. Adv. Frac. Strength 279, 1356 (2005).

    Google Scholar 

  30. J.S. Park, H.K. Lim, E.S. Park, H.S. Shin, W.H. Lee, W.T. Kim, and D.H. Kim: Fracture behavior of bulk metallic glass/metal laminate composites. Mater. Sci. Eng., A 417, 1 (2006).

    Article  Google Scholar 

  31. D.C. Hofmann, H. Kozachakov, H.E. Khalifa, J.P. Schramm, M.D. Demetriou, K.S. Vecchio, and W.L. Johnson: Semi-solid induction forging of metallic glass matrix composites. JOM 61, 11 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank R. DeSalvo for assistance with the setup and Liquidmetal Technologies Inc. for supplying materials. D.C. Hofmann acknowledges financial support from the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA). C.F. Zachrisson acknowledges financial support from American Association for the Advancement of Science Entry Point’s ACCESS, a program sponsored by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachrisson, C., Kozachkov, H., Roberts, S. et al. Effect of processing on Charpy impact toughness of metallic glass matrix composites. Journal of Materials Research 26, 1260–1268 (2011). https://doi.org/10.1557/jmr.2011.92

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.92

Navigation