Skip to main content
Log in

Effect of Main Parameters on the Mechanical and Wear Behaviour of Functionally Graded Materials by Centrifugal Casting: A Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mechanical characteristics of functionally graded materials (FGMs) can be optimized for specific application depending on the demands of different engineering sectors using appropriate combinations of material amounts and processing parameters. In recent years, many approaches to the production of functionally graded metal matrix composites (FGMMCs) using the centrifugal casting method have been proposed. This paper presents an overview of different available materials and process parameters for FGMs based on their mechanical and wear characteristics. The major conclusions in this paper are drawn from the previous studies on experimental investigations on mechanical properties and wear characteristics of FGMMCs. The findings in current work are classified according to material parameters such as the type of matrix material, reinforcing material (type, weight, and size), in addition to process parameters such as mould rotational speed and pouring temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[57]

Fig. 2
Fig. 3

[78]

Fig. 4

[78]

Fig. 5

[93]

Fig. 6

[93]

Fig. 7

[89]

Fig. 8

[89]

Fig. 9

[89]

Fig. 10

[95]

Fig. 11

[95]

Fig. 12

[98]

Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.G. Arsha, E. Jayakumar, T.P.D. Rajan, V. Antony, B.C. Pai, Mater. Des. 88, 1201 (2015)

    CAS  Google Scholar 

  2. R.M. Mahamood, M. Shukla, S. Pityana, Functionally Graded Material : An Overview, (2012), pp.2-6

  3. Y. Li, S. Jian, Z. Min, Key Eng. Mater. 280–283, 1925 (2005)

    Google Scholar 

  4. H. Sai, Int. J. Curr. Eng. Technol. 8, 79 (2018)

    Google Scholar 

  5. A. Gupta, M. Talha, Prog. Aerosp. Sci. 79, 1 (2015)

    Google Scholar 

  6. A. Mortensen, S. Suresh, J. Int. Mater. Rev. 40, 239 (1995)

    CAS  Google Scholar 

  7. A.G. Rao, M. Mohape, V.A. Katkar, D.S. Gowtam, V.P. Deshmukh, A.K. Shah, Mater. Manuf. Process. 25, 572 (2010). https://doi.org/10.1080/10426910903180037

    Article  CAS  Google Scholar 

  8. M. Nazirudeen, Processing Techniques of Functionally Graded Materials: A Review, (2015), pp. 98–105

  9. Y. Miyamoto, Mater. Technol. 11, 230 (1996)

    Google Scholar 

  10. D.K. Jha, T. Kant, R.K. Singh, Compos. Struct. 96, 833 (2013)

    Google Scholar 

  11. Y. Miyamoto, Functionally Graded Materials: Design Processing and Applications (Kluwer Academic, Dordrecht, 1999)

    Google Scholar 

  12. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, K. Schulte, Mater. Sci. Eng. A 362, 40 (2003)

    Google Scholar 

  13. N. Tejaswini, R. Babu, S. Ram, Int. J. Adv. Eng. Sci. Technol. 4, 183 (2013)

    Google Scholar 

  14. E. Müller, Č. Drašar, J. Schilz, W.A. Kaysser, Mater. Sci. Eng. A 362, 17 (2003)

    Google Scholar 

  15. I. Bharti, N. Gupta, K.M. Gupta, Int. J. Mater. Mech. Manuf. 1, 221 (2013)

    CAS  Google Scholar 

  16. E.S.C. Chin, Mater. Sci. Eng., A 259, 155 (1999)

    Google Scholar 

  17. B. Gupta, Int. J. Eng. Technol. Sci. Res. IJETSR. 4, 39 (2017)

    Google Scholar 

  18. M. Wośko, B. Paszkiewicz, T. Piasecki, A. Szyszka, R. Paszkiewicz, M. Tłaczała, Opt. Appl. 35, 663 (2005)

    Google Scholar 

  19. G. Udupa, S. Shrikantha Rao, K.V. Gangadharan, Future applications of Carbon Nanotube reinforced Functionally Graded Composite Materials (2012), pp. 399-404

  20. Z.H.U. Xiao-min, Y.U. Jia-kang, W. Xin-yu, Trans. Nonferrous Met. Soc. China 22, 1686 (2012)

    Google Scholar 

  21. N.V.D.T. Sarathchandra, S.K. Subbu, Mater. Today Proc. 5, 21328 (2018)

    Google Scholar 

  22. B. Kieback, A. Neubrand, H. Riedel, Mater. Sci. Eng. A 362, 81 (2003)

    Google Scholar 

  23. A. Toudehdehghan, et al. A Brief Review of Functionally Graded Materials, (2017), pp. 1–6

  24. M. Gasik, Int. J. Mater. Prod. Technol. 39, 20 (2010)

    CAS  Google Scholar 

  25. M. Naebe, K. Shirvanimoghaddam, Appl. Mater. Today 5, 223 (2016)

    Google Scholar 

  26. J.J. Sobczak, L. Drenchev, J. Mater. Sci. Technol. 29, 297 (2013). https://doi.org/10.1016/j.jmst.2013.02.006

    Article  CAS  Google Scholar 

  27. R.M. Mahamood, E.T. Akinlabi, JMADE 84, 402 (2015)

    CAS  Google Scholar 

  28. B. Zhang, P. Jaiswal, R. Rai, S. Nelaturi, J. Comput. Inf. Sci. Eng. 18, 1 (2018)

    Google Scholar 

  29. K. Gupta, H. Saini, M.A. Zaidi, J. Mater. Sci. Mech. Eng. 4, 163 (2017)

    Google Scholar 

  30. Y. Pei, V. Ocelı́k, J.T. De Hosson, Mater. Sci. Eng. A. 342, 192 (2003)

    Google Scholar 

  31. F. Erdemir, A. Canakci, T. Varol, Trans. Nonferrous Met. Soc. 25, 3569 (2015)

    CAS  Google Scholar 

  32. P. Muller, J.-Y. Hascoet, P. Mognol, Rapid Prototyp. J. 20, 511 (2014)

    Google Scholar 

  33. J. Zygmuntowicz, A. Miazga, P. Wiecinska, W. Kaszuwara, K. Konopka, M. Szafran, Compos. Part B 141, 158 (2018)

    CAS  Google Scholar 

  34. Y. Watanabe, O. Inaguma, H. Sato, E. Miura-Fujiwara, Materials (Basel) 2, 2510 (2009)

    CAS  Google Scholar 

  35. Y. Watanabe, H. Sato, Nanocomposites with Unique Properties and Applications in Medicine and Industry, Review Fabrication of Functionally Graded Materials Under a Centrifugal Force (InTech, China, 2011), pp. 133–150

    Google Scholar 

  36. A. Saiyathibrahim, R. Subramaniyan, P. Dhanapal, Centrifugally Cast functionally Graded Materials: A Review, (2016), pp. 68–73

  37. P.G. Mukunda, S.A. Rao, S.S. Rao, Met. Mater. Int. 16, 137 (2010)

    CAS  Google Scholar 

  38. E.D. Eide’l’man, M.A. Durnev, Tech. Phys. 63, 1615 (2018)

    Google Scholar 

  39. T.P.D. Rajan, B.C. Pai, Mater. Sci. Forum 690, 157 (2011)

    CAS  Google Scholar 

  40. Y. Watanabe, R. Sato, I. Kim, S. Miura, H. Miura, Mater. Trans. 46, 944 (2005)

    CAS  Google Scholar 

  41. Y. Watanabe, A. Kawamoto, K. Matsuda, Compos. Sci. Technol. 62, 881 (2002)

    CAS  Google Scholar 

  42. R. Rodrı, Mater. Sci. Eng. A 323, 445 (2002)

    Google Scholar 

  43. E. Akinlabi, R. Mahamood, Functionally Graded Materials (Springer, Switzerland, 2017)

    Google Scholar 

  44. G. Chirita, D. Soares, F.S. Silva, Mater. Des. 29, 20 (2008)

    CAS  Google Scholar 

  45. K. Wang et al., J. Mater. Process. Technol. 242, 60 (2017)

    CAS  Google Scholar 

  46. T.P.D. Rajan, E. Jayakumar, B.C. Pai, Trans. Indian Inst. Met. 65, 531 (2012)

    CAS  Google Scholar 

  47. X.H. Qin, W.X. Han, C.G. Fan, J. Mater. Sci. Lett. 21, 665 (2002)

    CAS  Google Scholar 

  48. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, J. Mater. Res. Technol. 4, 434 (2015)

    CAS  Google Scholar 

  49. N. Radhika, Tribol. Ind. 38, 425 (2016)

    Google Scholar 

  50. N. Radhika, A. Vaishnavi, G.K. Chandran, Tribol. Ind. 36, 188 (2014)

    Google Scholar 

  51. J.O. Agunsoye, A.A. Ayeni, Tribol. Ind. 34, 82 (2012)

    Google Scholar 

  52. L. Muddamsetty, N. Radhika, Tribol. Ind. 38, 108 (2016)

    Google Scholar 

  53. R.K.S. Pankaj Kumar Gupta, Mater. Today Proc. 5, 18761 (2018). https://doi.org/10.1016/j.matpr.2018.06.223

    Article  CAS  Google Scholar 

  54. Z.H. Melgarejo, O.M. Sua, Scr. Mater. 55, 95 (2006)

    CAS  Google Scholar 

  55. M. Mohammadi et al., J. Mater. 56, 105 (2014)

    Google Scholar 

  56. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Int. J. Cast Met. Res. 21, 214 (2008)

    CAS  Google Scholar 

  57. J.Y. Fakruddinali, K.S. Badarinarayan, Ind. J. Sci. Res. Tech. 3, 34 (2015)

    Google Scholar 

  58. S. Sasidharan, R. Puthucode, N. Radhika, A. Shivashankar, Mater. Today Proc. 5, 12657 (2018)

    CAS  Google Scholar 

  59. M. Sam, N. Radhika, Part. Sci. Technol. 1 (2017). https://doi.org/10.1080/02726351.2017.1364312

    Article  Google Scholar 

  60. N. Radhika, J. Jefferson, Silicon, (2018). https://doi.org/10.1007/s12633-018-9957-2

    Google Scholar 

  61. N. Radhika, K. Teja, K. Rahul, A. Shivashankar, Silicon, 10, 1705 (2018). https://doi.org/10.1007/s12633-017-9657-3

    Article  CAS  Google Scholar 

  62. N. Radhika, R. Raghu, A.V. Vidyapeetham, J. Eng. Sci. Technol. 12, 1386 (2017)

    Google Scholar 

  63. P.D. Sequeira, Y. Watanabe, L.A. Rocha, Solid State Phenom. 105, 415 (2005)

    CAS  Google Scholar 

  64. W. Kai, X.U.E. Han-song, Z.O.U. Mao-hua, L.I.U. Chang-ming, Trans. Nonferrous Met. Soc. China 19, 1410 (2009)

    Google Scholar 

  65. Y. Watanabe, H. Sato, T. Ogawa, I. Kim, Mater. Trans. 48, 2945 (2007)

    CAS  Google Scholar 

  66. S.C. Ferreira, L.A. Rocha, E. Ariza, P.D. Sequeira, Y. Watanabe, J.C.S. Fernandes, Corros. Sci. 53, 2058 (2011)

    CAS  Google Scholar 

  67. X. Huang, C. Liu, J. Mater. Process. Technol. 211, 1540 (2011)

    CAS  Google Scholar 

  68. G. Udupa, S.S. Rao, K.V. Gangadharan, Proc. Mater. Sci. 5, 1291 (2014)

    CAS  Google Scholar 

  69. J.R. Gomes, A.S. Miranda, L.A. Rocha, R.F. Silva, Key Eng. Mater. 232, 271 (2002)

    Google Scholar 

  70. I. Chakrabarty, J. Alloys Compd. 724, 84 (2017)

    Google Scholar 

  71. G.V. Mahajan, V.S. Aher, Int. J. Sci. Res. Publ. 2, 1 (2012)

    Google Scholar 

  72. S.D.S. Sunilraj, G.R.S. Ravishankar, Trans. Indian Inst. Met. 69, 699 (2016)

    Google Scholar 

  73. J. Zygmuntowicz, P. Wiecińska, A. Miazga, K. Konopka, W. Kaszuwara, J. Therm. Anal. Calorim. 130, 123 (2017)

    CAS  Google Scholar 

  74. Z.H. Melgarejo, O.M. Suárez, K. Sridharan, Compos. Part A 39, 1150 (2008)

    Google Scholar 

  75. S. El-hadad, H. Sato, Y. Watanabe, J. Mater. Process. Tech. 210, 2245 (2010)

    CAS  Google Scholar 

  76. S.V. Gawali, V.B. Tungikar, SAS Tech. J. 12, 15 (2013)

    Google Scholar 

  77. N. Radhika, R. Raghu, Trans. Nonferrous Met. Soc. 26, 905 (2016)

    CAS  Google Scholar 

  78. K. Bhatija, N. Radhika, Mat.-wiss. u. Werkstofftech 48, 600 (2017)

    CAS  Google Scholar 

  79. A.C. Vieira, P.D. Sequeira, J.R. Gomes, L.A. Rocha, Wear 267, 585 (2009)

    CAS  Google Scholar 

  80. N. Radhika, Sci. Eng. Compos. Mater (2016). https://doi.org/10.1515/secm-2015-0160

    Article  Google Scholar 

  81. K.V. Babu, J.T.W. Jappes, T.P.D. Rajan, J. Mater. Des. Appl. 230, 182 (2014)

    Google Scholar 

  82. A.S. Karun, T.P.D. Rajan, U.T.S. Pillai, B.C. Pai, J. Compos. Mater. (2015). https://doi.org/10.1177/0021998315602946

    Article  Google Scholar 

  83. E. Jayakumar, T.P.D. Rajan, B.C. Pai, Adv. Mech. Robot. Eng. 1, 61 (2014)

    Article  CAS  Google Scholar 

  84. A. Velhinho, P.D. Sequeira, Mater. Sci. Forum 423-425, 257 (2003)

    CAS  Google Scholar 

  85. A. Velhinho, J.D. Botas, E. Ariza, J.R. Gomes, L.A. Rocha, Mater. Sci. Forum 456, 871 (2004)

    Google Scholar 

  86. K. Wang, J.F. Cheng, W.J. Sun, H.S. Xue, J. Compos. Mater. 46, 1021 (2011)

    Google Scholar 

  87. N. Radhika, R. Raghu, J. Tribol. 137, 1 (2015)

    Google Scholar 

  88. S.C. Ferreira, A. Velhinho, L.A. Rocha, F.M.B. Fernandes, Mater. Sci. Forum 588, 207 (2008)

    Google Scholar 

  89. E. Jayakumar, J.C. Jacob, T.P.D. Rajan, M.A. Joseph, B.C. Pai, Metall. Mater. Trans. A 47, 4306 (2016)

    CAS  Google Scholar 

  90. S.O. Yılmaz, S. Buytoz, J. Mater. Sci. 42, 4485 (2007)

    Google Scholar 

  91. M. Kok, K. Ozdin, J. Mater. Process. Technol. 183, 301 (2007)

    Google Scholar 

  92. T. Prasad, N.Chikkanna, Int. J. Adv. Eng. Technol. vol. II, 161 (2011)

  93. Ö. Mer Savaş et al., Sci. Eng. Compos. Mater (2014). https://doi.org/10.1515/secm-2014-0141

    Article  Google Scholar 

  94. S. Junus, A. Zulfia, Mater. Sci. Forum 857, 179 (2016)

    Google Scholar 

  95. E. Jayakumar, A.P. Praveen, T.P.D. Rajan, B.C. Pai, Trans. Indian Inst. Met. (2018). https://doi.org/10.1007/s12666-018-1442-5

    Article  Google Scholar 

  96. T.R. Prabhu, Arch. Civ. Mech. Eng. 17, 20 (2016)

    Google Scholar 

  97. R. Radhika, N. Karthik, S. Gowtham, S. Ramkumar, Silicon 11, 345 (2019). https://doi.org/10.1007/s12633-018-9848-6

    Article  CAS  Google Scholar 

  98. I.M. EL-Galy, B.I. Bassiouny, M.H. Ahmed, Key Eng. Mater. 786, 276 (2018)

    Google Scholar 

  99. B.C. Pai, T.P.D. Rajan, Acta Met. Sin. (Engl. Lett.) 27, 825 (2014)

    Google Scholar 

  100. S. Jamian, S.N. Ayob, M. Rusydi, Z. Abidin, N. Hisyamudin, M. Nor, J. Eng. Appl. Sci. 11, 2327 (2016)

    CAS  Google Scholar 

  101. N. Ijamulwar, K. Chimote, K.S. Zakiuddin, Int. J. Sci. Eng. Res. 3, 3 (2012)

    Google Scholar 

  102. M. Kohnizio Mahli, S. Jamian, A. Emran Ismail, N.H. Muhd Nor, M.K. Mohd Nor, K. Azhar Kamarudin, J. Phys. Conf. Ser. 914, 3 (2017)

    Google Scholar 

  103. T.P.D. Rajan, R.M. Pillai, B.C. Pai, Mater. Char. 61, 923 (2010)

    CAS  Google Scholar 

  104. R. Rodriguez-Castro, M.H. Kelestemur, J. Mater. Sci. 7, 1813 (2002)

    Google Scholar 

  105. T.P.D. Rajan, B.C. Pai, Trans. Indian Inst. Met. 62, 383 (2009)

    CAS  Google Scholar 

  106. K. Wang, H. Zhili, J. Wuhan Univ. Technol. Sci. Ed. (2016). https://doi.org/10.1007/s11595-016-1352-5

    Article  Google Scholar 

  107. W. Kai, S. Wenju, J. Wuhan Univ. Technol. Sci. Ed. 26, 504 (2011)

    Google Scholar 

  108. I.M. El-Galy, M.H. Ahmed, B.I. Bassiouny, Alex. Eng. J. 56, 371 (2017)

    Google Scholar 

  109. L.B. Song, P. Yan, X. Mao, Q. Dong, H. Liang, Mater. Sci. Forum 479, 1517 (2005)

    Google Scholar 

  110. N. Radhika, R. Raghu, Trans. Indian Inst. Met. 71, 715 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018B48414), National Natural Science Foundation of China (Grant No. 51774109), the Key Research and Development Project of Jiangsu Province of China (Grant No. BE2017148) and Postgraduate Education Reform Project of Jiangsu Province (JGLX19_027)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bassiouny Saleh or Jinghua Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleh, B., Jiang, J., Ma, A. et al. Effect of Main Parameters on the Mechanical and Wear Behaviour of Functionally Graded Materials by Centrifugal Casting: A Review. Met. Mater. Int. 25, 1395–1409 (2019). https://doi.org/10.1007/s12540-019-00273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00273-8

Keywords

Navigation