Skip to main content
Log in

Oxidized starch films reinforced with natural halloysite

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Oxidized starch (OSt) films reinforced with natural halloysite were prepared by adding modified natural halloysite nanotubes into an OSt matrix. The halloysite/OSt films were characterized by x-ray diffraction, scanning electron microscopy, and ultraviolet spectrometry. The mechanical properties and moisture absorbability of the films were also studied. The modified halloysite nanotubes were well distributed in the starch matrix, and the tensile strength (TS) of the films was greatly enhanced, but the moisture adsorption ability of the films only changed slightly. The flexibility of the films was improved by adding glycerol but at a cost of reducing the TS. Incorporating a small amount of poly(vinyl alcohol) (PVA) improved both the TS and the percent elongation at break of the halloysite/OSt films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. K. Das, D. Ray, N.R. Bandyopadhyay, A. Gupta, S. Sengupta, S. Sahoo, A. Mohanty, and M. Misra: Preparation and characterization of cross-linked starch/poly(vinyl alcohol) green films with low moisture absorption. Ind. Eng. Chem. Res. 49, 2176 (2010).

    Article  CAS  Google Scholar 

  2. R. Belhassen, S. Boufi, F. Vilaseca, J.P. Lo’pez, J.A. Me’ndez, E. Franco, M.A. Pe’lach, and P. Mutje’: Biocomposites based on Alfa fibers and starch-based biopolymer. Polym. Adv. Technol. 20, 1068 (2009).

    Article  CAS  Google Scholar 

  3. B. Sreedhar, D.K. Chattopadhyay, M.S.H. Karunakar, and A.R.K. Sastry: Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J. Appl. Polym. Sci. 101, 25 (2006).

    Article  CAS  Google Scholar 

  4. G.X. Zou, J.P. Qu, and X.L. Zou: Optimization of water absorption of starch/PVA composites. Polym. Compos. 28, 674 (2007).

    Article  CAS  Google Scholar 

  5. M. Avella, M.E. Errico, R. Rimedio, and P. Sadocco: Preparation of biodegradable polyesters/high amylose starch composites by reactive blending and their characterization. J. Appl. Polym. Sci. 83, 1432 (2002).

    Article  CAS  Google Scholar 

  6. A.J.F. Carvalho, A.E. Job, N. Alves, A.A.S. Curvelo, and A. Gandini: Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95 (2003).

    Article  CAS  Google Scholar 

  7. N. Follain, C. Joly, and P. Dole: Properties of starch based blends. Part 2. Influence of poly vinyl alcohol addition and photocrosslinking on starch based materials mechanical properties. Carbohydr. Polym. 60, 185 (2005).

    Article  CAS  Google Scholar 

  8. H.R. Park, S.H. Chough, Y.H. Yun, and S.D. Yoon: Properties of starch/PVA blend films containing citric acid as additive. J. Polym. Environ. 13, 375 (2005).

    Article  CAS  Google Scholar 

  9. H.X. Wu, C.H. Liu, J.G. Chen, Y. Chen, D.P. Anderson, and P.R. Chang: Oxidized pea starch/chitosan composite films: Structural characterization and properties. J. Appl. Polym. Sci. 118, 3082 (2010).

    Article  CAS  Google Scholar 

  10. Y.Z. Wan, H.L. Luo, F. He, H. Liang, Y. Huang, and X.L. Li: Mechanical, moisture absorption, and biodegradation behaviors of bacterial cellulose fiber-reinforced starch biocomposites. Compos. Sci. Technol. 69, 1212 (2009).

    Article  CAS  Google Scholar 

  11. Q. Wang, X.W. Hu, Y.M. Du, and J.F. Kennedy: Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr. Polym. 82, 842 (2010).

    Article  CAS  Google Scholar 

  12. E. Kristo and C.G. Biliaderis: Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr. Polym. 68, 146 (2007).

    Article  CAS  Google Scholar 

  13. C.D. Mu, F. Liu, Q.S. Cheng, H.L. Li, B. Wu, G.Z. Zhang, and W. Lin: Collagen cryogel cross-linked by dialdehyde starch. Macromol. Mater. Eng. 295, 100 (2010).

    Article  CAS  Google Scholar 

  14. M.E. Gomes, A.S. Ribeiro, P.B. Malafaya, R.L. Reis, and A.M. Cunha: A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: Morphology, mechanical and degradation behavior. Biomaterials 22, 883 (2001).

    Article  CAS  Google Scholar 

  15. J. Blazek and L. Copeland: Amylolysis of wheat starches. II. Degradation patterns of native starch granules with varying functional properties. J. Cereal Sci. 52, 295 (2010).

    Article  CAS  Google Scholar 

  16. I.B. Leonor, A. Ito, K. Onuma, N. Kanzaki, and R.L. Reis: In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: An in situ study using atomic force microscopy. Biomaterials 24, 579 (2003).

    Article  CAS  Google Scholar 

  17. P. Kampeerapappun, D. Aht-Ong, D. Pentrakoon, and K. Srikulkit: Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67, 155 (2007).

    Article  CAS  Google Scholar 

  18. M. Mondragón, E.M. Hernánde, J.L. Rivera-Armenta, and F.J. Rodríguez-González: Injection molded thermoplastic starch/natural rubber/clay nanocomposites: Morphology and mechanical properties. Carbohydr. Polym. 77, 80 (2009).

    Article  Google Scholar 

  19. L. Vertuccio, G. Gorrasi, A. Sorrentino, and V. Vittoria: Nano clay reinforced PCL/starch blends obtained by high-energy ball milling. Carbohydr. Polym. 75, 172 (2009).

    Article  CAS  Google Scholar 

  20. H. Ismail, P. Pasbakhsh, M.N. Ahmad Fauzi, and A. Abu Bakar: Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym. Test. 27, 841 (2008).

    Article  CAS  Google Scholar 

  21. D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, and H. Mohwald: Layer-by-Layer nanocontainers for self-healing corrosion protection. Adv. Mater. 18, 1672 (2006).

    Article  CAS  Google Scholar 

  22. D.G. Shchukin and H. Mohwald: Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv. Funct. Mater. 17, 1451 (2007).

    Article  CAS  Google Scholar 

  23. R.R. Price, B.P. Gaber, and Y.M. Lvov: In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J. Microencapsul. 18, 713 (2001).

    Article  CAS  Google Scholar 

  24. G.S. Machado, K.A.D.F. Castro, F. Wypych, and S. Nakagaki: Immobilization of metalloporphyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. J. Mol. Catal. Chem. 283, 99 (2008).

    Article  CAS  Google Scholar 

  25. D.C.O. Marney, L.J. Russell, D.Y. Wu, T. Nguyen, D. Cramm, N. Rigopoulos, N. Wright, and M. Greaves: The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym. Degrad. Stab. 93, 1971 (2008).

    Article  CAS  Google Scholar 

  26. P. Pasbakhsh, H. Ismail, M.N. Ahmad Fauzi, and A. Abu Baka: EPDM/modified halloysite nanocomposites. Appl. Clay Sci. 48, 405 (2010).

    Article  CAS  Google Scholar 

  27. Y.A. Zheng and A.Q. Wang: Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J. Macromol. Sci. Pure Appl. Chem. 47, 33 (2010).

    Article  CAS  Google Scholar 

  28. A.D. Hughes and M.R. King: Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir 26, 12155 (2010).

    Article  CAS  Google Scholar 

  29. V. Vergaro, E. Abdullayev, Y.M. Lvov, A. Zeitoun, R. Cingolani, R. Rinaldi, and S. Leporatti: Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules 11, 820 (2010).

    Article  CAS  Google Scholar 

  30. N.Y. Ning, Q.J. Yin, F. Luo, Q. Zhang, R. Du, and Q. Fu: Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48, 7374 (2007).

    Article  CAS  Google Scholar 

  31. P.R. Chang, J.G. Yu, and X.F. Ma: Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol. Mater. Eng. 294, 762 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, W., Wang, W., Gao, J. et al. Oxidized starch films reinforced with natural halloysite. Journal of Materials Research 26, 2938–2944 (2011). https://doi.org/10.1557/jmr.2011.359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.359

Navigation