Skip to main content

Advertisement

Log in

Properties of Starch/PVA Blend Films Containing Citric Acid as Additive

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Starch/polyvinyl alcohol (PVA) blend films were prepared successfully by using starch, polyvinyl alcohol (PVA), glycerol (GL) sorbitol (SO) and citric acid (CA) for the mixing process. The influence of mixing time, additional materials and drying temperature of films on the properties of the films was investigated. With increase in mixing time, the tensile strength (TS), elongation (%E), degree of swelling (DS) and solubility (S) of the film were equilibrated. The equilibrium for TS, %E, DS and S value was 20.12 MPa, 36.98%, 2.4 and 0.19, respectively. The mixing time of equilibrium was 50 min. TS, %E, DS and S of starch/PVA blend film were examined adding glycerol (GL), sorbitol (SO) and citric acid (CA) as additives. At all measurement results, except for DS, the film adding CA was better than GL or SO because hydrogen bonding at the presence of CA with hydroxyl group and carboxyl group increased the inter/intramolecular interaction between starch, PVA and additives. Citric acid improves the properties of starch/PVA blend film compared to glycerol and sobitol. When the film was dried at low temperature, the properties of the films were clearly improved because the hydrogen bonding was activated at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Lenz (1993) Adv. Polym. Sci. 107 1–40

    Google Scholar 

  2. K. E. Spence J. Jane A. L. Pometto (1995) J. Environ. Polym. Degradtion. 3 69–74 Occurrence Handle10.1007/BF02067482

    Article  Google Scholar 

  3. M. E. Gomes A. S. Ribeiro P. B. Malafaya R. L. Reis A. M. Cunha (2001) Biomaterials 22 883–889 Occurrence Handle10.1016/S0142-9612(00)00211-8 Occurrence Handle11311006

    Article  PubMed  Google Scholar 

  4. A. R. Kirby S. A. Clark R. Parker A. C. Smith (1993) J. Mater. Sci. 28 5937–5942 Occurrence Handle10.1007/BF00365204

    Article  Google Scholar 

  5. A. L. Ollett R. Parker A. C. Smith (1991) J. Mater. Sci. 26 1351–1356 Occurrence Handle10.1007/BF00544476

    Article  Google Scholar 

  6. F. H. Otey R. P. Westhoff W. M. Doane (1980) Ind. Eng. Chem. Prod. RD. 19 592–595 Occurrence Handle10.1021/i360076a021

    Article  Google Scholar 

  7. A. Sen M. Bhattacharya (2000) Polymer. 41 9177–9190 Occurrence Handle10.1016/S0032-3861(00)00300-1

    Article  Google Scholar 

  8. J. J. G. Soest Particlevan D. B. Borger (1997) J. Appl. Polym. Sci. 64 631–644 Occurrence Handle10.1002/(SICI)1097-4628(19970425)64:4<631::AID-APP2>3.0.CO;2-O

    Article  Google Scholar 

  9. G. M. Glenn J. Hsu (1997) Ind. Crop. Prod. 7 37–44 Occurrence Handle10.1016/S0926-6690(97)00068-X

    Article  Google Scholar 

  10. I. Arvanitoyannis C. G. Biliaderis H. Ogawa N. Kawasaki (1998) Carbohyd. Polym. 36 89–104 Occurrence Handle10.1016/S0144-8617(98)00016-2

    Article  Google Scholar 

  11. P. P. Klemchuk (1990) Polym. Degrad. Stabil. 27 183–202 Occurrence Handle10.1016/0141-3910(90)90108-J

    Article  Google Scholar 

  12. E. Psomiadou I. Arvanitoyannis C. G. Biliaderis H. Ogawa N. Kawasaki (1997) Carbohyd. Polym. 33 227–242 Occurrence Handle10.1016/S0144-8617(97)00032-5

    Article  Google Scholar 

  13. U. Funke W. Bergthaller M. G. Lindhauer (1998) Polym. Degrad. Stabil. 59 293–296 Occurrence Handle10.1016/S0141-3910(97)00163-8

    Article  Google Scholar 

  14. T. Ishigaki Y. Kawagoshi M. Ike M. Fujita (1999) World J. Microb. Biot. 15 321–327 Occurrence Handle10.1023/A:1008919218289

    Article  Google Scholar 

  15. D. Briassoulis (2004) J. Polym. Environ. 12 65–81 Occurrence Handle10.1023/B:JOOE.0000010052.86786.ef

    Article  Google Scholar 

  16. R. Chandra R. Rustgi (1998) Prog. Polym. Sci. 23 1273–1335 Occurrence Handle10.1016/S0079-6700(97)00039-7

    Article  Google Scholar 

  17. J. W. Lawton (1996) Carbohyd. Polym. 29 203–208 Occurrence Handle10.1016/0144-8617(96)00028-8

    Article  Google Scholar 

  18. L. Mao S. Imam S. Gordon P. Cinelli E. Chiellini (2002) J. Polym. Environ. 8 205–211 Occurrence Handle10.1023/A:1015201928153

    Article  Google Scholar 

  19. M. Zhai F. Yoshii T. Kume (2003) Carbohyd. Polym. 52 311–317 Occurrence Handle10.1016/S0144-8617(02)00292-8

    Article  Google Scholar 

  20. S. H. D. Hulleman F. H. P. Janssen H. Feil (1998) Polymer 39 IssueID10 2043–2048 Occurrence Handle10.1016/S0032-3861(97)00301-7

    Article  Google Scholar 

  21. D. Lourdin G. D. Valle P. Colonna (1995) Carbohyd. Polym. 27 261–270 Occurrence Handle10.1016/0144-8617(95)00071-2

    Article  Google Scholar 

  22. J. J. G. Soest Particlevan K. Benes D. Wit Particlede (1996) Polymer. 37 IssueID16 3543–3552 Occurrence Handle10.1016/0032-3861(96)00165-6

    Article  Google Scholar 

  23. S. Gaudin D. Lourdin D. Le Botlan J. L. Ilari P. Colonna (1999) J. Cereal. Sci. 29 273–284 Occurrence Handle10.1006/jcrs.1999.0236

    Article  Google Scholar 

  24. S. Gaudin D. Lourdin P. M. Forssell P. Colonna (2000) Carbohyd. Polym. 43 33–37 Occurrence Handle10.1016/S0144-8617(99)00206-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Do Yoon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HR., Chough, SH., Yun, YH. et al. Properties of Starch/PVA Blend Films Containing Citric Acid as Additive. J Polym Environ 13, 375–382 (2005). https://doi.org/10.1007/s10924-005-5532-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-005-5532-1

Key words

Navigation