Skip to main content
Log in

Atypical behaviors of BMIMTf ionic liquid present in ionic conductivity, SEM, and TG/DTG analyses of P(VdF-HFP)/LiTf-based solid polymer electrolyte system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solid polymer electrolytes (SPEs) with poly(vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] as polymer host, doped with lithium trifluoromethanesulfonate (LiTf) and 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMIMTf) have been synthesized via solution casting method. This P(VdF-HFP)/LiTf/BMIMTf-based SPE achieves ~2.4 × 10−3 and ~1.1 × 10−2 S· cm−1 at 30 and 80 °C, respectively, with 100 part by weight of BMIMTf incorporated into the system. A very interesting trend of temperature-dependence ionic conductivity has been obtained. A rationalization of the trend is given and the morphological changes observed in scanning electron micrographs seem to be commensurate with it. Thermogravimetric and differential thermogravimetric analyses reveal some changes in thermal properties of the SPEs, including the possibility of phase separation happening in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. L.T. Costa, R.L. Lavall, R.S. Borges, J. Rieumont, G.G. Silva, and M.C.C. Ribeiro: Polymer electrolytes based on poly(ethylene glycol) dimethyl ether and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate: Preparation, physico-chemical characterization, and theoretical study. Electrochim. Acta 53, 1568 (2007).

    Article  CAS  Google Scholar 

  2. J.S. Lee, T. Nohira, and R. Hagiwara: Novel composite electrolyte membranes consisting of fluorohydrogenate ionic liquid and polymers for the unhumidified temperature fuel cell. J. Power Sources 171, 535 (2007).

    Article  CAS  Google Scholar 

  3. A. Brazier, G.B. Appetecchi, S. Passerini, A.S. Vuk, R. Orel, F. Donsanti, and F. Decker: Ionic liquids in electrochromic devices. Electrochim. Acta 52, 4792 (2007).

    Article  CAS  Google Scholar 

  4. K-M. Lee, V. Suryanarayanan, and K-C. Ho: A photo-physical and electrochemical impedance spectroscopy study on the quasi-solid state dye-sensitized solar cells based on poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 185, 1605 (2008).

    Article  CAS  Google Scholar 

  5. S.A. Forsyth and D.R. MacFarlane: 1-Alkyl-3-methylbenzotriazolium salts: Ionic solvents and electrolytes. J. Mater. Chem. 13, 2451 (2003).

    Article  CAS  Google Scholar 

  6. N. Wang, X.X. Zhang, H.H. Liu, and B.Q. He: 1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes. Carbohydr. Polym. 76, 482 (2009).

    Article  CAS  Google Scholar 

  7. S. Keskin, D. Kayrak-Talay, U. Akman, and Ö. Hortaçsu: A review of ionic liquids towards supercritical fluid applications. J. Supercrit. Fluids 43, 150 (2007).

    Article  CAS  Google Scholar 

  8. J.J. Xu, H. Ye, and J. Huang: Novel zinc ion conducting polymer gel electrolytes based on ionic liquids. Electrochem. Commun. 7, 1309 (2005).

    Article  CAS  Google Scholar 

  9. P.K. Singh, K-W. Kim, and H-W. Rhee: Electrical, optical and photoelectrochemical studies on a solid PEO-polymer electrolyte doped with low viscosity ionic liquid. Electrochem. Commun. 10, 1769 (2008).

    Article  CAS  Google Scholar 

  10. N-S. Choi, Y.M. Lee, B.H. Lee, J.A. Lee, and J-K. Park: Nanocomposite single ion conductor based on organic–inorganic hybrid. Solid State Ionics 167, 293 (2004).

    Article  CAS  Google Scholar 

  11. C. Tiyapiboonchaiya, J.M. Pringle, J.Z. Sun, N. Byrne, P.C. Howlett, D.R. Macfarlane, and M. Forsyth: The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29 (2004).

    Article  CAS  Google Scholar 

  12. S. Ramesh and M.F. Chai: Conductivity, dielectric behaviour and FTIR studies of high molecular weight poly(vinylchloride)–lithium triflate polymer electrolytes. Mater. Sci. Eng., B 139, 240 (2007).

    Article  CAS  Google Scholar 

  13. C-Y. Chiang, Y.J. Shen, M.J. Reddy, and P.P. Chu: Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’ form. J. Power Sources 123, 222 (2003).

    Article  CAS  Google Scholar 

  14. G.G. Kumar, P. Kim, A.R. Kim, K.S. Nahm, and R.N. Elizabeth: Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes. Mater. Chem. Phys. 115, 40 (2009).

    Article  CAS  Google Scholar 

  15. R. Gregorio Jr. and D.S. Borges: Effect of crystallization rate on the formation of the polymorphs of solution cast poly(vinylidene fluoride). Polymer 49, 4009 (2008).

    Article  CAS  Google Scholar 

  16. R. Marcilla, F. Alcaide, H. Sardon, J.A. Pomposo, C. Pozo-Gonzalo, and D. Mecerreyes: Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices. Electrochem. Commun. 8, 482 (2006).

    Article  CAS  Google Scholar 

  17. J. Reiter, J. Vondrák, J. Michálek, and Z. Micka: Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents. Electrochim. Acta 52, 1398 (2006).

    Article  CAS  Google Scholar 

  18. S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, S. Protti, C. Gerbaldi, and A. Spinella: Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyehtyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 195, 559 (2010).

    Article  CAS  Google Scholar 

  19. S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and A. Wendsjö: Crystallinity and morphology of PVdF-HFP-based gel electrolytes. Polymer 42, 1407 (2001).

    Article  CAS  Google Scholar 

  20. A.M. Elmér, B. Wesslén, P. Sommer-Larsen, K. West, H. Hassender, and P. Jannasch: Ion conductive electrolyte membranes based on co-continuous polymer blends. J. Mater. Chem. 13, 2168 (2003).

    Article  Google Scholar 

  21. V. Aravindan and P. Vickraman: A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for Lithium-ion batteries. Ionics 13, 277 (2007).

    Article  CAS  Google Scholar 

  22. G.C. Li, P. Zhang, H.P. Zhang, L.C. Yang, and Y.P. Wu: A porous polymer electrolyte based on P(VDF-HFP) prepared by a simple phase separation process. Electrochem. Commun. 10, 1883 (2008).

    Article  CAS  Google Scholar 

  23. C. Sirisopanaporn, A. Fernicola, and B. Scrosati: New, ionic liquid-based membranes for lithium battery application. J. Power Sources 186, 490 (2009).

    Article  CAS  Google Scholar 

  24. B. Singh, M.S. Hundal, G-G. Park, J-S. Park, W-Y. Lee, C-S. Kim, K. Yamada, and S.S. Sekhon: Non-aqueous polymer electrolytes containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium tetrafluoroborate. Solid State Ionics 178, 1404 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S., Lu, SC. Atypical behaviors of BMIMTf ionic liquid present in ionic conductivity, SEM, and TG/DTG analyses of P(VdF-HFP)/LiTf-based solid polymer electrolyte system. Journal of Materials Research 26, 2945–2951 (2011). https://doi.org/10.1557/jmr.2011.347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.347

Navigation