Skip to main content
Log in

Mechanochemical synthesis of functionalized silicon nanoparticles with terminal chlorine groups

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A facile and efficient, one step method using high-energy ball milling (HEBM) to produce chloroalkyl-functionalized silicon nanoparticles is described. HEBM causes silicon wafers to fracture and exposes reactive silicon surfaces. Nanometer-sized, functionalized particles with alkyl-linked chloro groups are synthesized by milling the silicon precursor in presence of an ω-chloroalkyne in either hexene or hexyne. This process allows tuning of the concentration of the exposed, alkyl-linked chloro groups, simply by varying the relative amounts of the coreactants. The silicon nanoparticles formed serve as a starting point for a wide variety of chemical reactions, which may be used to alter the surface properties of the functionalized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green: Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl. Phys. Lett. 88, 161102 (2006).

    Article  CAS  Google Scholar 

  2. L. Raniero, S. Zhang, H. Aqyas, I. Ferreira, R. Igreja, E. Fortunato, and R. Martins: Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films 487, 170 (2005).

    Article  CAS  Google Scholar 

  3. O. Boyraz and B. Jalili: Demonstration of directly modulated silicon Raman laser. Opt. Express 13, 796 (2005).

    Article  CAS  Google Scholar 

  4. M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, and A.J. Nozik: Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506 (2007).

    Article  CAS  Google Scholar 

  5. A. Fojtik, J. Valenta, I. Peant, M. Kalal, and P. Fiala: On the road to silicon nanoparticle laser. J. Mater. Process. Technol. 181, 88 (2007).

    Article  CAS  Google Scholar 

  6. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chiab, M.H. Nayfeh, L. Wagner, and L. Mitas: Magic family of discretly sized ultrabright Si nanoparticles, in Nanophase and Nanocomposite Materials IV, edited by S. Komarneni, J.C. Parker, R.A. Vaia, G.Q. Lu, and J.-I. Matsushita (Mater. Res. Soc. Symp. Proc.703, Warrendale, PA, 2002) V11.14, p. 475.

    CAS  Google Scholar 

  7. L. Wang, V. Reipa, and J. Blasic: Silicon nanoparticles as a luminescent label to DNA. Bioconjugate Chem. 15, 409 (2004).

    Article  CAS  Google Scholar 

  8. D.R. Larson, W.R. Zipfel, R.M. Williams, S.W. Clark, M.P. Bruchez, F.W. Wise, and W.W. Webb: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434 (2003).

    Article  CAS  Google Scholar 

  9. M. Rosso-Vasic, E. Spruijt, Z. Popovi, K. Overgaag, B. van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Dominguez-Gutiérrez, L. De Cola, and H. Zuilhof: Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. J. Mater. Chem. 19, 5926 (2009).

    Article  CAS  Google Scholar 

  10. D.S. English, L.E. Pell, Z. Yu, P.F. Barbara, and B.A. Korgel: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2(7), 681 (2002).

    Article  CAS  Google Scholar 

  11. J.P. Proot, C. Delrue, and G. Allan: Electronic structure and optical properties of silicon crystallites: Application to porous silicon. Appl. Phys. Lett. 61, 1948 (1992).

    Article  CAS  Google Scholar 

  12. N. Shirahata, T. Hasegawa, Y. Sakka, and T. Tsuruoka: Size-tuneable UV-luminescent silicon nanocrystals. Small 6, 915 (2010).

    Article  CAS  Google Scholar 

  13. M.H. Nayfeh, E.V. Rogozhina, and L. Mitas: Synthesis, Funtionalization and Surface Treatment of Nanoparticles (American Scientific Publisher, Stevenson Ranch, CA, 2003) p. 173.

    Google Scholar 

  14. M. Nirmal and L. Brus: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999).

    Article  CAS  Google Scholar 

  15. R. Cohen, N. Zenou, D. Cahen, and S. Yitzchaik: Molecular electronic tuning of Si surfaces. Chem. Phys. Lett. 279, 270 (1997).

    Article  CAS  Google Scholar 

  16. J.H. Warner, A. Hoshino, A. Shiohara, K. Yamamoto, and R.D. Tilley: The synthesis of silicon and germanium quantum dots for biomedical applications. Proc. SPIE 6096, 6096071 (2006).

    Google Scholar 

  17. L. Mangolini, E. Thimsen, and U. Kortshagen: High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5, 655 (2005).

    Article  CAS  Google Scholar 

  18. Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, and A.J. Bard: Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293 (2002).

    Article  CAS  Google Scholar 

  19. F. Hua, M.T. Swihart, and E. Ruckenstein: Efficient surface grafting of luminescent silicon quantum dots by photoinitiated hydrosilylation. Langmuir 21, 6054 (2005).

    Article  CAS  Google Scholar 

  20. C.M. Hessel, E.J. Henderson, and J.G.C. Veinot: Hydrogen silsesquioxane: A molecular precursor for nanocrsytalline Si–SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139 (2006).

    Article  CAS  Google Scholar 

  21. L. Sacarlescu and M. Simionescu: Polymer route for silicon quantum dots. J. Optoelectron. Adv. Mater. 10, 649 (2008).

    Google Scholar 

  22. F. Hua, F. Erogbogbo, M.T. Swihart, and E. Ruckenstein: Organically capped silicon nanoparticles with blue photoluminescence prepared by hydrosilyation followed by oxidation. Langmuir 22, 4363 (2006).

    Article  CAS  Google Scholar 

  23. R.K. Baldwin, K.A. Pettigrew, J.C. Garno, P.P. Power, G. Liu, and S.M. Kauzlarich: Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124, 1150 (2002).

    Article  CAS  Google Scholar 

  24. J. Zou, R.K. Baldwin, K.A. Pettigrew, and S.M. Kauzlarich: Solution synthesis of ultrastable luminescent siloxane-coated silicon nanoparticles. Nano Lett. 4, 1181 (2004).

    Article  CAS  Google Scholar 

  25. J. Zou and S.M. Kauzlarich: Functionalization of silicon nanoparticles via silanization: Alkyl, halide and ester. J. Cluster Sci. 19, 34 (2008).

    Article  CAS  Google Scholar 

  26. X. Zhang, D. Neiner, S. Wang, A.Y. Louie, and S.M. Kauzlarich: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 1 (2007).

    Google Scholar 

  27. J. Choi, N.S. Wang, and V. Reipa: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 25, 7097 (2009).

    Article  CAS  Google Scholar 

  28. J. Choi, S. Tung, N.S. Wang, and V. Reipa: Small-angle neutron scattering measurement of silicon nanoparticle size. Nanotechnology 19, 0857151 (2008).

    Google Scholar 

  29. J. Choi, N.S. Wang, and V. Reipa: Photoassisted tuning of silicon nanocrystal photoluminescence. Langmuir 23, 3388 (2007).

    Article  CAS  Google Scholar 

  30. G. Belomoin, J. Therrien, A. Smith, S. Rao, R. Twesten, S. Chaieb, M. Nayfeh, and L. Wagner: Effect of thickness variation in high efficiency InGaN/GaN light emitting diodes. Appl. Phys. Lett. 80, 841 (2002).

    Article  CAS  Google Scholar 

  31. J.A. Carlisle, M. Dongol, I.N. Germanenko, Y.B. Phitawalla, and M.S. El-Shall: Evidence for changes in the electronic and photoluminescence properties of surface-oxidized silicon nanocrystals induced by shrinking the size of the silicon core. Chem. Phys. Lett. 326, 335 (2000).

    Article  CAS  Google Scholar 

  32. M. Carlisle, I.N. Germanenko, Y.B. Phitawalla, and M.S. El-Shall: Morphology, photoluminescence and electronic structure in oxidized silicon nanoclusters. J. Electron Spectrosc. Relat. Phenom. 229, 114 (2001).

    Google Scholar 

  33. M.R. Linford, P. Fenter, P.M. Eisenberger, and C.E.D. Chidsey: Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145 (1995).

    Article  CAS  Google Scholar 

  34. A.S. Heintz, M.J. Fink, and B.S. Mitchell: Mechanochemical synthesis of blue luminescent alkyl/alkenyl-passivated silicon nanoparticles. Adv. Mater. 19, 3984 (2007).

    Article  CAS  Google Scholar 

  35. D.R. Maurice and T.H. Courtney: The physics of mechanical alloying: A first report. Metall. Trans A 21, 289 (1990).

    Article  Google Scholar 

  36. L. Yang, Y-Y. Lua, M.V. Lee, and M.R. Linford: Chemomechanical functionalization and pattering of silicon. Acc. Chem. Res. 38, 933 (2005).

    Article  CAS  Google Scholar 

  37. Q. Liu and R. Hoffmann: The bare and acetylene chemisorbed Si(001) surface, and the mechanism of acetylene chemisorption. J. Am. Chem. Soc. 117, 4082 (1995).

    Article  CAS  Google Scholar 

  38. H. Liu and R.J. Hamers: Stereoselectivity in molecule-surface reactions: Adsorption of ethylene on the silicon(001) surface. J. Am. Chem. Soc. 119, 7593 (1997).

    Article  CAS  Google Scholar 

  39. J. McMurry: Organic Chemistry, 5th ed. (Brooks/Cole, Belmont, CA, 2000).

    Google Scholar 

  40. S. Bhattcharjee, L.H.J. de Haan, N.M. Evers, X. Jiang, A.T.M. Marcelis, H. Zuilhof, I.M.C.M. Rietjens, and G.M. Alink: Role of surface charge and oxidative stress in the cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 celss. Part. Fibre Toxicol. 7, 25 (2010).

    Article  CAS  Google Scholar 

  41. A.S. Heintz, M.J. Fink, and B.S. Mitchell: Silicon nanoparticles with chemically tailored surfaces. Appl. Organomet. Chem. 24, 236 (2010).

    Article  CAS  Google Scholar 

  42. C.-S. Yang, R.A. Bley, S.M. Kauzlarich, H.W.H. Lee, and G.R. Delgado: Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J. Am. Chem. Soc. 121, 5191 (1999).

    Article  CAS  Google Scholar 

  43. A.L. Smith: Infrared spectra-structure for organosilicon compounds. Spectrochim. Acta 16, 87 (1960).

    Article  CAS  Google Scholar 

  44. D.B. Mawhinney, J.A. Glass Jr., and J.T. Yates Jr.: FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101(7), 1202 (1997).

    Article  CAS  Google Scholar 

  45. D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, and J.S. Kim: Performance evaluation of a nafion/silicon oxide membrane for direct methanol fuel cell. J. Power Sources 106, 173 (2002).

    Article  CAS  Google Scholar 

  46. C.A. Canaria, I.N. Lees, A.W. Wun, G.M. Miskelly, and M.J. Sailor: Characterization of the carbon-silicon stretch in methylated porous silicon–observation of an anomalous isotope in the FTIR spectrum. Inorg. Chem. Commun. 5, 560 (2002).

    Article  CAS  Google Scholar 

  47. M.V. Wolkin, L. Jorne, and P.M. Fauchet: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82, 197 (1999).

    Article  CAS  Google Scholar 

  48. P.A. Thiel: The interaction of water with solid surfaces: Fundamental aspects. Surf. Sci. Rep. 7, 211 (1987).

    Article  CAS  Google Scholar 

  49. M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, and J. Pielichowski: Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly (3-hexylthiophene). Macromolecules 31, 5051 (1998).

    Article  CAS  Google Scholar 

  50. X. Wang, R.Q. Zhang, and S.T. Lee: Unusual size dependence of the optical emission band gap in small hydrogenated silicon nanoparticles. Appl. Phys. Lett. 90, 123116 (2007).

    Article  CAS  Google Scholar 

  51. L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, and W. Marine: Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 87, 3829 (2000).

    Article  CAS  Google Scholar 

  52. Y.Q. Wang, Y.G. Wang, L. Cao, and Z.X. Cao: High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride. Appl. Phys. Lett. 83, 3474 (2003).

    Article  CAS  Google Scholar 

  53. M. Rosso-Vasic, E. Spruijt, B. van Lagen, L. De Cola, and H. Zuilhof: Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 10, 1835 (2008).

    Article  CAS  Google Scholar 

  54. X. Zhang, D. Neiner, S. Wang, A.Y. Louie, and S.M. Kauzlarich: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 095601 (2007).

    Article  CAS  Google Scholar 

  55. Y. He, Z.-H. Kang, Q.-S. Li, C.H.A. Tsang, C-H. Fan, and S-T. Lee: Ultra stable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. 121, 134 (2009).

    Article  Google Scholar 

  56. Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong, and S.-T. Lee: Water-soluable silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661 (2009).

    Article  CAS  Google Scholar 

  57. S.-W. Lin and D-H. Chen: Synthesis of water-soluable blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5, 72 (2009).

    Article  CAS  Google Scholar 

  58. N. Shirahata, M.R. Linford, S. Furumi, L. Pei, Y. Sakka, R.J. Gates, and M.C. Aplund: Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolyers. Chem. Commun. (Camb.) 31, 4684 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation (NSF Grant CMMI-0726943) and by the Tulane Institute for Macro-Molecular Engineering and Sciences (TIMES, NASA Grant NNX08AP04A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian S. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallmann, S., Fink, M.J. & Mitchell, B.S. Mechanochemical synthesis of functionalized silicon nanoparticles with terminal chlorine groups. Journal of Materials Research 26, 1052–1060 (2011). https://doi.org/10.1557/jmr.2011.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.31

Navigation