Skip to main content
Log in

Functionalization of Silicon Nanoparticles via Silanization: Alkyl, Halide and Ester

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The feasibility of using silanization as a general tool to functionalize the surface of silicon nanoparticles (NPs) has been investigated in detail. Silicon NPs were prepared from reduction of silicon tetrachloride with sodium naphthalide. The terminal chloride on the surface of as-synthesized particles was substituted by methanol and water, in sequence. The particles were then silanized by octyltrichlorosilane, 11-bromoundecyltrichlorosilane, or 2-(carbomethoxy)ethyltrichlorosilane. These treatments yielded alkyl-, bromo-, or ester-termini on NP surfaces, respectively. The NPs were characterized by TEM, NMR, FTIR, UV–Vis, and PL spectroscopy. Changes of termination groups brought various functionalities to the NPs, without loss of the photophysics of the original NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. T. Canham (1990). Appl. Phys. Lett. 57, 1046.

    Article  CAS  Google Scholar 

  2. L. Brus (1994). J. Phys. Chem. 98, 3575.

    Article  CAS  Google Scholar 

  3. M. J. Sailor, and E. J. Lee (1997). Adv. Mater. 9, 783.

    Article  CAS  Google Scholar 

  4. A. G. Cullis (1997). J. Appl. Phys. 82, 909.

    Article  CAS  Google Scholar 

  5. M. P. Stewart, and J. M. Buriak (2000). Adv. Mater. 12, 859.

    Article  CAS  Google Scholar 

  6. J. R. Heath (1992). Science 258, 1131.

    Article  CAS  Google Scholar 

  7. K. A. Littau, P. J. Szajowshki, A. J. Muller, A. R. Kortan, and L. E. Brus (1993). J. Phys. Chem. 97, 1224.

    Article  CAS  Google Scholar 

  8. R. A. Bley, and S. M. Kauzlarich (1996). J. Am. Chem. Soc. 118, 12461.

    Article  CAS  Google Scholar 

  9. N. A. Dhas, C. P. Raj, and A. Gedanken (1998). Chem. Mater. 10, 3278.

    Article  CAS  Google Scholar 

  10. J. P. Wilcoxon, G. A. Samara, and P. N. Provencio (1999). Phys. Rev. B 60, 2704.

    Article  CAS  Google Scholar 

  11. C. S. Yang, R. A. Bley, S. M. Kauzlarich, H. W. H. Lee, and G. R. Delgado (1999). J. Am. Chem. Soc. 121, 5191.

    Article  CAS  Google Scholar 

  12. J. D. Holmes, K. J. Ziegler, R. C. Doty, L. E. Pell, K. P. Johnston, and B. A. Korgel (2001). J. Am. Chem. Soc. 123, 3743.

    Article  CAS  Google Scholar 

  13. X. Li, Y. He, S. S. Talukdar, and M. T. Swihart (2003). Langmuir 19, 8490.

    Article  CAS  Google Scholar 

  14. A. G. Cullis, L. T. Canham, and P. D. J. Calcott (1997). J. Appl. Phys. 82, 909.

    Article  CAS  Google Scholar 

  15. Z. Zhou, L. Brus, and R. Friesner (2003). Nano Lett. 3, 163.

    Article  CAS  Google Scholar 

  16. S. Aihara, R. Ishii, M. Fukuhara, N. Kamata, D. Terunuma, Y. Hirano, N. Saito, M. Aramata, and S. Kashimura (2001). J. Non-Cryst. Solids 296, 135.

    Article  CAS  Google Scholar 

  17. P. E. Batson, and J. R. Heath (1993). Phys. Rev. Lett. 71, 911.

    Article  CAS  Google Scholar 

  18. G. Belomoin, M. Alsalhi, and M. H. Nayfeh (2004). J. Appl. Phys. 95, 5019.

    Article  CAS  Google Scholar 

  19. R. A. Bley (1997). Ph.D. Dissertation.

  20. L. E. Brus, P. F. Szajowski, W. L. Wilson, T. D. Harris, S. Schuppler, and P. H. Citrin (1995). J. Am. Chem. Soc. 117, 2915.

    Article  CAS  Google Scholar 

  21. Z. Ding, M. B. Quinn, A. K. Haram, L. E. Pell, B. A. Korgel, and A. J. Bard (2002). Science 296, 1293.

    Article  CAS  Google Scholar 

  22. F. J. Hua, M. T. Swihart, and E. Ruckenstein (2005). Langmuir 21, 6054.

    Article  CAS  Google Scholar 

  23. R. Boukherrou, D. D. Wayner, G. I. Sproule, D. J. Lockwood, and L. T. Canhan (2001). Nano Lett. 1, 713.

    Article  Google Scholar 

  24. A. J. Williamson, J. C. Grossman, R. Q. Hood, A. Puzder, and G. Galli (2002). Phys. Rev. Lett. 89, 196803.

    Article  Google Scholar 

  25. G. Belomoin, J. Therrien, and M. H. Nayfeh (2000). Appl. Phys. Lett. 77, 779.

    Article  CAS  Google Scholar 

  26. R. A. Bley, and S. M. Kauzlarich, in J. H. Fendler, and I. Danny (eds.), Nanoparticles in Solids and Solutions, (Kluwer Academic Press, The Netherlands, 1996), pp 467–475.

  27. R. K. Baldwin, K. A. Pettigrew, J. C. Garno, P. P. Power, G. Y. Liu, and S. M. Kauzlarich (2002). J. Am. Chem. Soc. 124, 1150.

    Article  CAS  Google Scholar 

  28. R. K. Baldwin, K. A. Pettigrew, E. Ratai, M. P. Augustine, and S. M. Kauzlarich (2002). Chem. Commun. 1822.

  29. D. E. Harwell, J. C. Croney, W. J. Qin, J. T. Thornton, E. K. Day, and D. M. Jameson (2003). Chem. Lett. 32, 1194.

    Article  CAS  Google Scholar 

  30. J. M. Buriak (2002). Chem. Rev. 102, 1271.

    Article  CAS  Google Scholar 

  31. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss, and A. P. Alivisatos (2001). J. Phys. Chem. B 105, 8861.

    Article  CAS  Google Scholar 

  32. W. J. Parak, D. Gerion, T. Pellegrino, D. AZanchet, C. Micheel, S. C. Williams, R. Boudreau, M. A. Le Gros, C. A. Larabell, and A. P. Alivisatos (2003). Nanotechnology 14, R15.

    Article  CAS  Google Scholar 

  33. L. M. Liz-Marzan, M. Giersig, and P. Mulvaney (1996). Langmuir 12, 4329.

    Article  CAS  Google Scholar 

  34. F. Padadimitrakopoulos, T. Phely-Bobin, and P. Wisniecki (1999). Chem. Mater. 11, 522.

    Article  Google Scholar 

  35. J. Ji, Y. Chen, R. A. Senter, and J. L. Coffer (2001). Chem. Mater. 13, 4783.

    Article  CAS  Google Scholar 

  36. Z. F. Li, M. T. Swihart, and E. Ruckenstein (2004). Langmuir 20, 1963.

    Article  CAS  Google Scholar 

  37. J. Zou, R. K. Baldwin, K. A. Pettigrew, and S. M. Kauzlarich (2004). Nano Lett. 4, 1181.

    Article  CAS  Google Scholar 

  38. K. A. Pettigrew, Q. Liu, P. P. Power, and S. M. Kauzlarich (2003). Chem. Mater. 15, 4005.

    Article  CAS  Google Scholar 

  39. T. Lummerstorfer, and H. Hoffmann (2004). J. Phys. Chem. B 108, 3963.

    Article  CAS  Google Scholar 

  40. M. Qhobosheane, S. Santra, P. Zhang, and W. Tan (2001). Analyst 126, 1274.

    Article  CAS  Google Scholar 

  41. N. Kohler, G. E. Fryxell, and M. Zhang (2004). J. Am. Chem. Soc. 126, 7206.

    Article  CAS  Google Scholar 

  42. R. M. Silverstein, G. C. Bassles, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 5th ed. (John Wiley & Sons, New York, 1991).

    Google Scholar 

  43. http://www.aist.go.jp/RIODB/SDBS/sdbs/owa/sdbs_sea.cre_frame_sea.

  44. R. S. Tanke, S. M. Kauzlarich, T. E. Patten, K. A. Pettigrew, D. L. Murphy, M. E. Thompson, and H. W. H. Lee (2003). Chem. Mater. 15, 1682.

    Article  CAS  Google Scholar 

  45. R. H. Terrill, T. A. Postlethwaite, C.-H. Chen, C.-D. Poon, A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark, and G. D. Wignall (1995). J. Am. Chem. Soc. 117, 12537.

    Article  CAS  Google Scholar 

  46. M. H. Hostetler, J. E. Wingate, C.-J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray (1998). Langmuir 14, 17.

    Article  CAS  Google Scholar 

  47. O. Kohlmann, W. E. Steinmetz, X.-A. Mao, W. P. Wuelfing, A. C. Templeton, R. W. Murray, and C. S. Johnson Jr. (2001). J. Phys. Chem. B 105, 8801.

    Article  CAS  Google Scholar 

  48. J. Zou, P. Sanelle, K. A. Pettigrew, and S. M. Kauzlarich (2006). J. Cluster Sci. 17, 565.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF grant (NIRT-0210807). We thank Jackie Gervay-Hague, Gang-yu Liu, Margie Longo, and Satya Dandekar for useful discussion, Shizhong Wang for his help with QY measurement, and John Neil for his assistance with powder X-ray diffraction. Katherine A. Pettigrew received support from an NSF IGERT “Nanomaterials in the Environment, Agriculture and Technology.” Work at the National Center for Electron Microscopy (NCEM) was performed under the auspices of the Director, Office of Energy Research, Office of Basic Energy Science, Materials Science Division, U.S. Department of Energy under Contract DE-Ac-03-76XF00098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Kauzlarich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, J., Kauzlarich, S.M. Functionalization of Silicon Nanoparticles via Silanization: Alkyl, Halide and Ester. J Clust Sci 19, 341–355 (2008). https://doi.org/10.1007/s10876-008-0182-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0182-9

Keywords

Navigation