Skip to main content
Log in

High-temperature deformation processing maps for a NiTiCu shape memory alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The properties of widely used Ni–Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the “processing maps” approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni42Ti50Cu8 SMA. Uniaxial compression experiments were conducted in the temperature range of 800–1050 °C and at strain rate range of 10−3 and 102 s−1. Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800–850 °C and at 0.1 s−1, which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table II
Fig. 6
Fig. 7
Table III
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Otsuka and C.M. Wayman: Shape Memory Materials (Cambridge University Press, MA, 1998).

    Google Scholar 

  2. K. Otsuka and X. Ren: Physical metallurgy of Ti Ni based shape memory alloys. Prog. Mater. Sci. 50, 511–678 (2005).

    Article  CAS  Google Scholar 

  3. T.W. Duerig, A.R. Pelton, and D. Stockel: An overview of nitinol medical applications. Mater. Sci. Eng., A 273–, 149 (1999).

    Article  Google Scholar 

  4. A.R. Pelton, D. Stockel, and T.W. Duerig: Medical uses of nitinol. Mater. Sci. Forum 327–, 63 (2000).

    Article  Google Scholar 

  5. Z.D. Cui, H.C. Man, F.T. Cheng, and T.M. Yue: Cavitation erosion–corrosion characteristics of laser surface modified NiTi shape memory alloy. Surf. Coat. Tech. 162, 147 (2003).

    Article  CAS  Google Scholar 

  6. P. Rocher, L. El Medawar, J.C. Hornez, M. Traisnel, J. Breme, and H.F. Hildebrand: Biocorrosion and cytocompatibility of NiTi shape memory alloys. Scr. Mater. 50, 255 (2004).

    Article  CAS  Google Scholar 

  7. R.D. Jean and J.C. Tsai: Effect of hot working on the martensitic transformation of Ni-Ti alloys. Scr. Metall. Mater. 30, 1027 (1994).

    Article  CAS  Google Scholar 

  8. I. Karaman, H. Ersin Karaca, Z.P. Luo, and H.J. Maier: The effect of severe marforming on shape memory characteristics of a Ti rich NiTi alloy processed using equal channel angular extrusion. Metall. Mater. Trans. A 34, 2527 (2003).

    Article  Google Scholar 

  9. T. Kurita, H. Matsumoto, and H. Abe: Transformation behavior in rolled NiTi. J. Alloy. Comp. 381, 158 (2004).

    Article  CAS  Google Scholar 

  10. D. Favier, Y. Liu, L. Orgeas, A. Sandel, L. Debove, and P. Comte-Gaz: Influence of thermomechanical processing on the superelastic properties of a Ni-rich nitinol shape memory alloy. Mater. Sci. Eng., A 429, 130 (2006).

    Article  CAS  Google Scholar 

  11. N.N. Popov, S.D. Prokoshkin, M.Yu. Sidorkin, T.I. Sysoeva, D.V. Borovkov, A.A. Aushev, I.V. Kostylev, and A.E. Gusarov: Effect of thermomechanical treatment on the structure and functional properties of a 45Ti-45Ni-10Nb alloy. Russ. Metall. 1, 59 (2007).

    Article  Google Scholar 

  12. B. Kockar, I. Karaman, A. Kulkarni, Y. Chumlyakov, and I.V. Kireeva: Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. J. Nucl. Mater. 361, 298 (2007).

    Article  CAS  Google Scholar 

  13. S.K. Sadrnezhaad and S.H. Mirabolghasemi: Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy. Mater. Des. 28, 1945 (2007).

    Article  CAS  Google Scholar 

  14. A.S. Paula, K.K. Mahesh, and F.M.B Fernandes: Evolution of phase transformations after multiple steps of marforming in Ti- rich Ni-Ti SMA. Eur. Phys. J. Spec. Top. 158, 45 (2008).

    Article  Google Scholar 

  15. A.S. Paula, K.K. Mahesh, C.M.L.D Santos, F.M.B Fernandes and C.S.D.C Viana: Thermomechanical behavior of Ti-rich NiTi shape memory alloys. Mater. Sci. Eng., A 481–, 146 (2008).

    Article  CAS  Google Scholar 

  16. H.C. Lin and S.K. Wu: Effects of hot rolling on the martensitic transformation of an equiatomic Ti-Ni alloy. Mater. Sci. Eng., A 158, 87 (1992).

    Article  Google Scholar 

  17. H.G. Suzuki, E. Takakura, and D. Eylon: Hot strength and hot ductility of titanium alloys—a challenge for continuous casting process. Mater. Sci. Eng., A 263, 230 (1999).

    Article  Google Scholar 

  18. C.P. Frick, A.M. Ortega, J. Tyber, A.El.M. Maksound, H.J. Maier, Y. Liu, and K. Gall: Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng., A 405, 34 (2005).

    Article  CAS  Google Scholar 

  19. K. Dehghani and A.A. Khamei: Hot deformation behavior of 60Nitinol (Ni60 wt%–Ti40 wt%) alloy: Experimental and computational studies. Mater. Sci. Eng., A 527, 684 (2010).

    Article  CAS  Google Scholar 

  20. A.A. Khamei and K. Dehghani: Modeling the hot-deformation behavior of Ni60 wt%–Ti40 wt% intermetallic alloy. J. Alloy. Comp. 490, 377 (2010).

    Article  CAS  Google Scholar 

  21. M. Morakabati, Sh. Kheirandish, M. Aboutalebi, A. Karimi Taheri, and S.M. Abbasi: The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys. J. Alloy. Comp. 499, 57 (2010).

    Article  CAS  Google Scholar 

  22. K.N. Melton and O. Mercier: Deformation behaviour of NiTi alloys. Metall. Trans. A 9, 1487 (1978).

    Article  Google Scholar 

  23. T.H. Nam, T. Saburi, Y. Kawamura, and K. Shimizu: Shape memory characteristics associated with the B2↔B19 and B19↔B19’ transformations in a Ti-40Ni-10 Cu (at.%) alloy. Mater. Trans. JIM 31, 262 (1990).

    Article  CAS  Google Scholar 

  24. T.H. Nam, T. Saburi, and K. Shimizu: Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959 (1990).

    Article  Google Scholar 

  25. T.H. Nam, T. Saburi, Y. Nakata, and K. Shimizu: Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 1050 (1990).

    Article  CAS  Google Scholar 

  26. T.H. Nam, T. Saburi, and K. Shimizu: Effect of thermo-mechanical treatment on shape memory characteristics in a Ti-40Ni-10Cu (at%) alloy. Mater. Trans. JIM 32, 814 (1991).

    Article  CAS  Google Scholar 

  27. Y.C. Lo, S.K. Wu, and H.E. Horng: A study of B2↔B19↔B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall. Mater. 41, 747 (1993).

    Article  CAS  Google Scholar 

  28. W. Tang, R. Sandstrom, Z.G. Wei, and S. Miyazak: Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. Metall. Mater. Trans. A 31, 2423 (2000).

    Article  Google Scholar 

  29. F.J. Gil, E. Solano, J. Penal, E. Engel, A. Mendoza, and J.A. Planell: Microstructural, mechanical and cytotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci.- Mater. Med. 15, 1181 (2004).

    Article  CAS  Google Scholar 

  30. S. Colombo, C. Cannizzo, F. Gariboldi, and G. Airoldi: Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy. J. Alloy. Comp. 422, 313 (2006).

    Article  CAS  Google Scholar 

  31. Ch. Grossmann, J. Frenzel, V. Samphath, T. Depka, and G. Eggeler: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).

    Article  CAS  Google Scholar 

  32. I. Sen and U. Ramamurty: High-temperature (1023 K to 1273 K [750 °C to 1000 °C]) plastic deformation behavior of B-modified Ti-6Al-4V alloys: Temperature and strain rate effects. Metall. Mater. Trans. A 41, 2959 (2010).

    Article  CAS  Google Scholar 

  33. R.L. Goetz and S.L. Semiatin: The adiabatic correction factor for the deformation heating during the uniaxial compression test. J. Mater. Eng. Perform. 10, 710 (2001).

    Article  CAS  Google Scholar 

  34. Y.V.R.K Prasad and S. Sasidhara: Hot Working Guide (ASM International, Materials Park, OH, 1997).

    Google Scholar 

  35. P.L. Charpentier, B.C. Store, S.C. Earnest, and J.F. Thomas Jr.: Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024. Metall. Trans. A 17, 2227 (1986).

    Article  Google Scholar 

  36. S.I. Oh, S.L. Semiatin, and J.J. Jonas: An analysis of the isothermal hot compression test. Metall. Trans. A 23, 963 (1992).

    Article  Google Scholar 

  37. A.K. Mukherjee: High temperature creep mechanism of TiNi. J. Appl. Phys. 39, 2201 (1968).

    Article  CAS  Google Scholar 

  38. H. Kato, T. Yamamoto, S. Hashimoto, and S. Miura: High-temperature plasticity of the β-phase in nearly-equiatomic nickel-titanium alloys. Mater. Trans. JIM 40, 343 (1999).

    Article  CAS  Google Scholar 

  39. Y.V.R.K Prasad: Recent advances in the science of mechanical processing. Indian J. Technol. 28, 435 (1990).

    CAS  Google Scholar 

  40. I. Sen, R.S. Kottada, and U. Ramamurty: High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater. Sci. Eng., A 527, 6157 (2010).

    Article  CAS  Google Scholar 

  41. E.M. Lehockey, Y.P. Lin, and O.E. Lepik: Mapping residual plastic strain in materials using electron backscatter diffraction, in Electron Backscatter Diffraction in Materials Science, edited by A.J. Schwartz, M. Kumar, and B.L. Adams (Kluwer Academic/Plenum Publishers, New York, 2000), pp 247–264.

  42. V. Randle and O. Engler: Introduction to Texture Analysis—Macrotexture, Microtexture and Orientation Mapping (CRC Press, Boca Raton, FL, 2000), pp 245–261.

    Book  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by Rolls–Royce Plc and The Boeing Company for this work. The authors are also thankful to S. Sasidhara and K. Rajasimha for their assistance in conducting the compression experiments, K. Shyamprasad for his help in writing the code that is used for the processing maps, and R. Basu for conducting the EBSD scans at the National Facility (OIM and x-ray bulk texture) at IIT-B under the guidance of I. Samajdar. Technical discussions with Y.V.R.K. Prasad, R.S. Kottada, I. Sen, and K. Suresh, which helped this work in many ways, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upadrasta Ramamurty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shastry, V.V., Maji, B., Krishnan, M. et al. High-temperature deformation processing maps for a NiTiCu shape memory alloy. Journal of Materials Research 26, 2484–2492 (2011). https://doi.org/10.1557/jmr.2011.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.257

Navigation