Skip to main content
Log in

Maximum performance in self-compatible thermoelectric elements

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Within the framework of a new optimization strategy based on self-compatible thermoelectric elements, the ability to reach maximum performance is discussed. For the efficiency of a thermogenerator and the coefficient of performance of a Peltier cooler, the constraint z T = ko = const. turned out to provide a suitable criterion for judging maximum performance. In this paper ko is calculated as an average of the temperature dependent figure of merit z T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.

Similar content being viewed by others

REFERENCES

  1. G.J. Snyder and T.S. Ursell: Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003).

    Article  Google Scholar 

  2. T.S. Ursell and G.J. Snyder: Compatibility of segmented thermoelectric generators. In Proceedings of the Twenty-First International Conference on Thermoelectrics, Long Beach, CA (IEEE, Piscataway, NJ) pp. 412–417.

  3. G.J. Snyder: Thermoelectric power generation: Efficiency and compatibility. In CRC Handbook of Thermoelectrics: Macro to Nano; D.M. Rowe, ed. (Taylor & Francis, Boca Raton, FL, 2006), chap. 9.

    Google Scholar 

  4. W. Seifert, E. Müller, and S. Walczak: Generalized analytic descrip-tion of one dimensional non-homogeneous TE cooler and generator elements based on the compatibility approach. In Proceedings of the Twenty-Fifth International Conference on Thermoelectrics; P. Rogl, ed. (IEEE, Piscataway, NJ, 2006), pp. 714–719.

  5. W. Seifert, K. Zabrocki, G.J. Snyder, and E. Müller: The compatibility approach in the classical theory of thermoelectricity seen from the perspective of variational calculus. Phys. Status Solidi A 207, 760–765 (2010).

    Article  CAS  Google Scholar 

  6. W. Seifert, E. Müller, and S. Walczak: Local optimization strategy based on first principle of thermoelectrics. Phys. Status Solidi A 205, 2908–2918 (2008).

    Article  CAS  Google Scholar 

  7. T.C. Harman and J.M. Honig: Thermoelectric and Thermomagnetic Effects and Applications (McGraw–Hill, New York, 1967).

    Google Scholar 

  8. A.F. Ioffe: Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, Ltd., London, 1957).

    Google Scholar 

  9. B. Sherman, R.R. Heikes, and R.W. Ure Jr.: Calculation of efficiency of thermoelectric devices. J. Appl. Phys. 31, 1–16 (1960).

    Article  Google Scholar 

  10. G.J. Snyder: Design and optimization of compatible, segmented thermoelectric generators. In Proceedings of the Twenty-Second International Conference on Thermoelectrics—ICT La Grande-Motte, France 2003 (IEEE, Piscataway, NJ, 2003), pp. 443–446.

  11. G.J. Snyder: Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004).

    Article  CAS  Google Scholar 

  12. E. Müller, K. Zabrocki, C. Goupil, G.J. Snyder, and W. Seifert: Functionally graded thermoelectric generator and cooler elements. In CRC Handbook of Thermoelectrics: Thermoelectrics and Its Energy Harvesting; D.M. Rowe, ed. (CRC, Boca Raton, FL, Feb. 2012).

    Google Scholar 

  13. Z. Bian, H. Wang, Q. Zhou, and A. Shakouri: Maximum cooling temperature and uniform efficiency criterion for inhomogeneous thermoelectric materials. Phys. Rev. B: Condens. Matter Mater. Phys. 75, 245208 (2007).

    Article  Google Scholar 

  14. C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G.J. Snyder: Thermodynamics of thermoelectric phenomena and applications. Entropy (Accepted 2011).

    Google Scholar 

  15. J.M. Steele: The Chauchy–Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities (Cambridge University Press, Cambridge, 2004).

    Book  Google Scholar 

  16. D.S. Mitrinovic, J.E. Pecaric, and A.M. Fin: Classic and New Inequalities in Analysis. (Kluwer Academic, Dordrecht, 1993).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Seifert.

APPENDIX: PROOF OF INTEGRAL INEQUALITIES

APPENDIX: PROOF OF INTEGRAL INEQUALITIES

Let us consider the integrals in Eqs. (8):

$$\matrix{ {\int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{1 \over T}{{\sqrt {1 + zT} - 1} \over {\sqrt {1 + zT} + 1}}dT} } \hfill & {{\rm{and}}} \hfill \cr {\int_{{T_{\rm{a}}}}^{{T_{\rm{s}}}} {{1 \over T}{{\sqrt {1 + zT} + 1} \over {\sqrt {1 + zT} - 1}}dT} } \hfill &, \hfill \cr } $$
((A1))

and their analytical solution in the case z(T)T = ko = const.,

$$\matrix{ {{{\sqrt {1 + {k_o}} - 1} \over {\sqrt {1 + {k_o}} + 1}}\ln \left( {{T_{\rm{a}}}/{T_{\rm{s}}}} \right)} \hfill & {{\rm{and}}} \hfill & {{{\sqrt {1 + {k_o}} + 1} \over {\sqrt {1 + {k_o}} - 1}}\ln \left( {{T_{\rm{s}}}/{T_{\rm{a}}}} \right)} \hfill \cr } \quad.$$
((A2))

Let us further assume that the constant ko is related to the average over z(T)T:

$${k_o} = {1 \over {{T_{\rm{s}}} - {T_{\rm{a}}}}}\int_{{T_{\rm{a}}}}^{{T_{\rm{s}}}} {z\left( T \right)T\;dT\quad.} $$
((A3))

The constraint z(T)T = ko = const. can be considered as an upper/lower bound because the following integral inequalities hold for positive values Ts and Ta and any given z(T) > 0, such that z(T)T is monotonously increasing:

$$\int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{1 \over T}{{\sqrt {1 + z\left( T \right)T} - 1} \over {\sqrt {1 + z\left( T \right)T + 1} }}dT \le {{\sqrt {1 + {k_o}} - 1} \over {\sqrt {1 + {k_o}} + 1}}\ln \left( {{T_{\rm{a}}}/{T_{\rm{s}}}} \right)} \quad,$$
((A4))

and

$$\int_{{T_{\rm{a}}}}^{{T_{\rm{s}}}} {{1 \over T}{{\sqrt {1 + z\left( T \right)T} + 1} \over {\sqrt {1 + z\left( T \right)T - 1} }}dT \ge {{\sqrt {1 + {k_o}} + 1} \over {\sqrt {1 + {k_o}} - 1}}\ln \left( {{T_{\rm{s}}}/{T_{\rm{a}}}} \right)} \quad,$$
((A5))

with ko given by Eq. (A3).

Proof: Let g be a continuous, convex (concave) function on ℝ+; then Jensen’s inequality

$${1 \over {b - a}}\int_a^b {g\left( {y\left( x \right)} \right)dx\,_{\left( \le \right)}^ \ge g\left( {{1 \over {b - a}}\int_a^b {y\left( x \right)dx} } \right)} $$

holds for any nonnegative continuous function y: [a, b] → ℝ (see Ref. 15, p. 113). Defining

$$\matrix{ {{g_l}\left( w \right): = {{\sqrt {1 + w} - 1} \over {\sqrt {1 + w} + 1}}} \hfill & {{\rm{and}}} \hfill & {{g_u}\left( w \right): = {{\sqrt {1 + w} + 1} \over {\sqrt {1 + w} - 1}}} \hfill \cr } \quad,$$

one easily verifies that gl(w) < 0 for all w ≥ 0 and gu(w) > 0 for all w > 0. Hence, gl is concave and gu is a convex function on (0, ∞).

First we prove Eq. (A4). Choosing y(T) = z(T)T we obtain by means of

$$\int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{1 \over T}dT} = \ln {{{T_{\rm{a}}}} \over {{T_{\rm{s}}}}}$$

and Eq. (A3) from Jensen’s inequality the following:

$$\matrix{ {{1 \over {{T_{\rm{a}}} - {T_{\rm{s}}}}}\int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{1 \over T}dT} \int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{{\sqrt {1 + z\left( T \right)T} - 1} \over {\sqrt {1 + z\left( T \right)T} + 1}}dT} } \hfill \cr { \le {g_l}\left( {{k_o}} \right)\ln \left( {{T_{\rm{a}}}/{T_{\rm{s}}}} \right) = {{\sqrt {1 + {k_o}} - 1} \over {\sqrt {1 + {k_o}} + 1}}\ln \left( {{T_{\rm{a}}}/{T_{\rm{s}}}} \right)\quad.} \hfill \cr } $$
((A6))

As a second step, we use Chebyshev’s inequality for integrals (see, e.g., Ref. 16). Let F and G be both monotonically increasing or monotonically decreasing nonnegative functions, respectively, on an interval [a, b]; then, the inequality

$$\matrix{ {{1 \over {b - a}}\int_a^b {F\left( x \right)G\left( x \right)} \,dx} \hfill \cr { \ge {1 \over {b - a}}\int_a^b {F\left( x \right)dx{1 \over {b - a}}\int_a^b {G\left( x \right)dx} } } \hfill \cr } $$

holds. The relation reverses if one of the functions increases and the other decreases. If y(T) = z(T)T is monotonically increasing, then the composition G(T) = (gly)(T) = gl(z(T)T) increases as well. However, F(T) = 1/T decreases; hence, we obtain from Eq. (A6) the proposed relation (A4).

In the same way we obtain the estimate Eq. (A5) applying Jensen’s inequality on the convex function gu and then Chebyshev’s inequality taking into account that the composition (guy)(T) = gu(z(T)T) now is a monotonically decreasing function if y = z(T)T increases. ▪

Remark 1: The integral on the left-hand side of Eq. (A5) cannot be bounded above by any constant depending on ko. We give an example from the mathematical point of view. Fix some interval [Ta, Ts] with TsTa = 20 (all temperatures in Kelvin), a constant c > 0, and define functions zn(T) > 0 on [Ta, Ts] by

$${z_n}\left( T \right)T = \left\{ {\matrix{ {c{{\left( {T - {T_{\rm{a}}} + 1} \right)}^n}/{{10}^n}} \hfill & {{\rm{if}}\,{T_{\rm{a}}} \le T \le {T_{\rm{a}}} + 9} \hfill &, \hfill \cr c \hfill & {{\rm{if}}\,{T_{\rm{a}}} + 9 \le T \le {T_{\rm{s}}}} \hfill &, \hfill \cr } } \right.$$

where n ∈ ℕ. Then zn(T)T is continuous and monotonically increasing for every fixed n and the averages ko are uniformly bounded by c/2 ≤ koc for all n ∈ ℕ. However, the corresponding integrals in Eq. (A.5) are unbounded because zn(T)T is chosen to be small for large n. To hold the average k0 bounded below, this effect is restricted to a subinterval of [Ta, Ts]. For example, on [Ta, Ta + 4] we have 0 < zn(T)Tc(1/2)n. Then we estimate

and 0 < zn(T)Tc(1/2)n on [Ta, Ta + 4] implies that

is unbounded as n → ∞.

Remark 2: Notice that the proved inequalities Eqs. (A4) and (A5) can be used to estimate the performance parameters. The result is that the quantities (9) serve as upper bounds of the performance values given by the Eqs. (8) if the function z(T)T is monotonically increasing and ko is given by Eq. (A3), because we get the following:

$$\matrix{ {{\rm{TEG:}}} \hfill & {1 - \exp \left( { - \int_{{T_{\rm{s}}}}^{{T_{\rm{a}}}} {{1 \over T}{{\sqrt {1 + z\left( T \right)T} - 1} \over {\sqrt {1 + z\left( T \right)T} + 1}}} dT} \right)} \hfill \cr {} \hfill & { \le 1 - {{\left( {{{{T_{\rm{s}}}} \over {{T_{\rm{a}}}}}} \right)}^{{{\sqrt {1 + {k_o}} - 1} \over {\sqrt {1 + {k_o}} + 1}}}}\quad,} \hfill \cr } $$
((A7))
$$\matrix{ {{\rm{TEC:}}} \hfill & {{{\left[ {\exp \left( {\int_{{T_{\rm{a}}}}^{{T_{\rm{s}}}} {{1 \over T}{{\sqrt {1 + z\left( T \right)T} + 1} \over {\sqrt {1 + z\left( T \right)T} - 1}}\,} dT} \right) - 1} \right]}^{ - 1}}} \hfill \cr {} \hfill & { \le {{\left[ {{{\left( {{{{T_{\rm{s}}}} \over {{T_{\rm{a}}}}}} \right)}^{{{\sqrt {1 + {k_o}} + 1} \over {\sqrt {1 + {k_o}} - 1}}}} - 1} \right]}^{ - 1}}\quad.} \hfill \cr } $$
((A8))

Equality holds if z(T) T = const. If z(T) T is decreasing, however, the above inequalities in general do not hold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, W., Pluschke, V., Goupil, C. et al. Maximum performance in self-compatible thermoelectric elements. Journal of Materials Research 26, 1933–1939 (2011). https://doi.org/10.1557/jmr.2011.139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.139

Navigation