Skip to main content
Log in

Directed block copolymer self-assembly for nanoelectronics fabrication

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper provides an overview of directed self-assembly (DSA) options that exhibit potential for enabling extensible high-volume patterning of nanoelectronics devices. It describes the current set of research requirements, which a DSA technology must satisfy to warrant insertion consideration, and summarizes the state-of-the art. The primary focus is on chemical patterning and graphoepitaxial approaches to directing block copolymer (BCP) based assembly. These options exhibit the nearest-term potential, among the emerging DSA technologies, for satisfying projected International Technology Roadmap for Semiconductors (ITRS) patterning requirements. The paper concludes with a selected set of additional challenges, which represent potential barriers to the integration of directed BCP patterning into a nanoelectronics manufacturing line, as well as a few emerging application opportunities for related functional materials. A glossary of acronyms and terms may be found at the end of this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
TABLE II.

Similar content being viewed by others

References

  1. K. Brown: When the roadmap doesn’t work. SRC Workshop on Microelectronics at the End of the Roadmap: Infrastructure and Patterning—Cross-Disciplinary Interaction Issues (1999).

  2. R. Dammel: SPIE Presentation (2002).

    Google Scholar 

  3. H.J. Levinson: Principles of Lithography, 2nd ed., Chapter 11, Cost of Ownership SPIE—The International Society for Optical Engineering, Bellingham, WA (2005).

    Book  Google Scholar 

  4. P. Ross: Moore’s second law. Forbes. 155, 116 (1995).

    Google Scholar 

  5. M. Kanellos: Moore’s law to roll on for another decade. Cnet News website, at http://news.cnet.com/2100-1001-984051.html (2003).

    Google Scholar 

  6. T. Wallow, C. Higgins, R. Brainard, K. Petrillo, W. Montgomery, C-S. Koay, G.. Denbeaux, O. Wood, and Y. Wei: Evaluation of EUV resist materials for use at the 32 nm half-pitch node. Proc. SPIE 6921, 69211F (2008).

    Article  CAS  Google Scholar 

  7. G.M. Gallatin: Resist blur and line edge roughness. Proc. SPIE 5754, 38 (2005).

    CAS  Google Scholar 

  8. G.M. Gallatin, P. Naulleau, D. Niakoula, R. Brainard, E. Hassanein, R. Matyi, J. Thackeray, K. Spear, and K. Dean: Resolution, LER, and sensitivity limitations of photoresists. Proc. SPIE 6921, 69211E (2008).

    Article  CAS  Google Scholar 

  9. D. Van Steenwinckel, R. Gronheid, J.H. Lammers, A.M. Meyers, F. Van Roey, and P. Willems: A novel method for characterizing resist performance. Proc. SPIE 6519, 65190V (2007).

    Article  CAS  Google Scholar 

  10. R.L. Bristol: The tri-lateral challenge of resolution, photospeed, and LER: Scaling below 50 nm? Proc. SPIE 6519, 65190W (2007).

    Article  Google Scholar 

  11. Lithography Chapter, Figure LITH2. Schematic process flows for double exposure, double patterning, and spacer double patterning, International Technology Roadmap for Semiconductors, 2007, pp. 1–34. International SEMATECH, Austin, TX, 2007.

    Google Scholar 

  12. Lithography Chapter, Table LITH2b. Lithography difficult challenges, International Technology Roadmap for Semiconductors, 2009, pp. 1–17. International SEMATECH, Austin, TX, 2009

    Google Scholar 

  13. P. Ajayan and S. Iljima: Smallest carbon nanotube. Nature 358(6381), 23 (1992).

    Article  Google Scholar 

  14. D.H. Gracias, J. Tien, T.L. Breen, C. Hsu, and G.M. Whitesides: Forming electrical networks in three dimensions by self-assembly. Science 289(5482), 1170 (2000).

    Article  CAS  Google Scholar 

  15. DNA: The Secret of Life, video, UNC-Chapel Hill Morehead Center, Chapel Hill, NC (2003).

    Google Scholar 

  16. R. Xiao, S. Cho, R. Liu, and S. Lee: Controlled electrochemical synthesis of conductive polymer nanotube structures. J. Am. Chem. Soc. 129(14), 4483 (2007).

    Article  CAS  Google Scholar 

  17. Emerging Research Material (ERM) Chapter, Directed Self-Assembly section, 2009 International Technology Roadmap for Semiconductors (Hsinchu, Taiwan, 2009), p. 24.

    Google Scholar 

  18. H. Kim, S. Park, and W. Hinsberg: Block copolymer-based nanostructures: Materials, processes, and applications to electronics. Chem. Rev. 110(1), 146 (2009).

    Article  CAS  Google Scholar 

  19. R. Segalman, H. Yokoyama, and E. Kramer: Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13(15), 1152 (2001).

    Article  CAS  Google Scholar 

  20. E. Schaffer, T. Thurn-Albrecht, T. Russell, and U. Steiner: Electrically induced structure formation and pattern transfer. Nature 403(6772), 874 (2000).

    Article  CAS  Google Scholar 

  21. T.S. Mayer, M. Li, J. Kim, W. Hu, T. Morrow, P. Nimmatoori, Y-Y. Cao, J.M. Redwing, T.E. Mallouk, and C.D. Keating: Enabling the convergence of chemistry and biology with chip-scale electronics by directed nanowire assembly. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).

    Google Scholar 

  22. R. Cavin, V. Zhirnov, D. Herr, A. Avila, and J. Hutchby: Research directions and challenges in nanoelectronics. J. Nanopart. Res. 8(6), 841 (2006).

    Article  Google Scholar 

  23. D. Philip and J. Stoddart: Self-assembly in natural and unnatural systems. Angew. Chem. Int. Ed. Engl. 35(11), 1155 (1996).

    Google Scholar 

  24. J.L. O’Brien, S.R. Schofield, M.Y. Simmons, R. Clark, A. Dzurak, N. Curson, B. Kane, N. McAlpine, M. Hawley, and G. Brown: Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys. Rev. B 64, 16401–1 (2001).

    Article  CAS  Google Scholar 

  25. S. Schofield, N. Curson, M. Simmons, F. Ruess, T. Hallam, L. Oberbeck, and R. Clark: Atomically precise placement of single dopants in Si. Phys. Rev. Lett. 91, 136104–1 (2003).

    Article  CAS  Google Scholar 

  26. F.J. Ruess, L. Oberbeck, M.Y. Simmons, K. Goh, A. Hamilton, T. Hallam, S. Schofield, N. Curson, and R. Clark: Toward atomic-scale device fabrication in silicon using scanning-probe microscopy. Nano Lett. 4(10), 1969 (2004).

    Article  CAS  Google Scholar 

  27. F.J. Ruess, W. Pok, T.C.G. Reusch, M. Butcher, K. Goh, L. Oberbeck, G. Scappucci, A. Hamilton, and M. Simmons: Realization of atomically-controlled dopant devices in silicon. Small 3(4), 563 (2007).

    Article  CAS  Google Scholar 

  28. A. Firouzi, D. Kumar, L. Bull, T. Besier, P. Sieger, Q. Huo, S. Walker, J. Zasadzinski, C. Glinka, and J. Nicol: Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267(5201), 1138 (1995).

    Article  CAS  Google Scholar 

  29. C. Flynn, S. Lee, B. Peelle, and A. Belcher: Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 51(19), 5867 (2003).

    Article  CAS  Google Scholar 

  30. H. Kim, W. Zin, and M. Lee: Anion-directed self-assembly of coordination polymer into tunable secondary structure. J. Am. Chem. Soc. 126(22), 7009 (2004).

    Article  CAS  Google Scholar 

  31. A.M. Welander, K.O. Stuen, H. Kang, C.C. Liu, H.H. Solak, J.J. de Pablo, and P.F. Nealey: Directed assembly of block copolymer resist materials: Manufacturability. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).

    Google Scholar 

  32. J. Lehn: Perspectives in supramolecular chemistry—From molecular recognition towards molecular information-processing and self-organization. Angew. Chem. Int. Ed. Engl. 29(11), 1304 (1990).

    Article  Google Scholar 

  33. J. Lehn M. Mascal A. Decian, and J. Fischer: Molecular recognition directed self-assembly of ordered supramolecular strands by cocrystallization of complementary molecular-components. J. Chem. Soc. Chem. Commun. 6, 479 (1990).

    Article  Google Scholar 

  34. J. Lehn, M. Mascal, A. Decian, and J. Fischer: Molecular ribbons from molecular recognition directed self-assembly of self-complementary molecular-components. J. Chem. Soc.—Perkin Trans. 2(4), 461 (1992).

    Article  Google Scholar 

  35. T. Gulikkrzywicki, C. Fouquey, and J. Lehn: Electron-microscopic study of supramolecular liquid-crystalline polymers formed by molecular-recognition directed self-assembly from complementary chiral components. Proc. Natl. Acad. Sci. USA 90(1), 163 (1993).

    Article  CAS  Google Scholar 

  36. M. Fujita: Metal-directed self-assembly of two- and three-dimensional synthetic receptors. Chem. Soc. Rev. 27(6), 417 (1998).

    Article  CAS  Google Scholar 

  37. M. Krische and J. Lehn: The utilization of persistent H-bonding motifs in the self-assembly of supramolecular architectures. Molecular Self Assembly Struct. Bond. 96, 3 (2000).

    CAS  Google Scholar 

  38. M. Albrecht: From molecular diversity to template-directed self-assembly–new trends in metallo-supramolecular chemistry. J. Inclusion Phenom. Macrocyclic Chem. 36(2), 127 (2000).

    Article  CAS  Google Scholar 

  39. T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Mashiko: Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature 413(6856), 619 (2001).

    Article  CAS  Google Scholar 

  40. J.C. Noveron, M.S. Lah, R.E. Del Sesto, A. Arif, J. Miller, and P. Stang: Engineering the structure and magnetic properties of crystalline solids via the metal-directed self-assembly of a versatile molecular building unit. J. Am. Chem. Soc. 124(23), 6613 (2002).

    Article  CAS  Google Scholar 

  41. O. Ikkala and G. Brinke: Functional materials based on self-assembly of polymeric supramolecules. Science 295(5564), 2407 (2002).

    Article  CAS  Google Scholar 

  42. M. Oh, G. Carpenter, and D. Sweigart: Supramolecular metal-organometallic coordination networks based on quinonoid Pi-complexes. Acc. Chem. Res. 37(1), 1 (2004).

    Article  CAS  Google Scholar 

  43. M. Stoykovich, M. Muller, S. Kim, H. Splak, E. Edwards, J. de Pablo, and P. Nealey: Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308(5727), 1442 (2005).

    Article  CAS  Google Scholar 

  44. P. Smith, C. Nordquist, T. Jackson, T. Mayer, B. Martin, J. Mbindyo, and T. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77(9), 1399 (2000).

    Article  CAS  Google Scholar 

  45. H. Jacobs, S. Campbell, and M. Steward: Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution. Adv. Mater. 14(21), 1553 (2002).

    Article  CAS  Google Scholar 

  46. A. Winkleman, G. Gates, L. McCarty, and G. Whitesides: Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv. Mater. 17(12), 1507 (2005).

    Article  CAS  Google Scholar 

  47. T. Morrow, M. Li, J. Kim, T. Mayer, and C. Keating: Programmed assembly of DNA-coated nanowire devices. Appl. Phys. Lett. 323(5912), 352 (2009).

    CAS  Google Scholar 

  48. P. Green, T. Russell, R. Jerome, and M. Granville: Diffusion of homopolymers into nonequilibrium block copolymer structures. 1. Molecular weight dependence. Macromolecules 21(11), 3266 (1988).

    Article  CAS  Google Scholar 

  49. C. Creton, E. Kramer, and G. Hadziioannou: Critical molecular-weight for block copolymer reinforcement of interfaces in a 2-phase polymer blend. Macromolecules 24(8), 1846 (1991).

    Article  CAS  Google Scholar 

  50. P. Green, T. Christensen, and T. Russell: Ordering at diblock-copolymer surfaces. Macromolecules 24(1), 252 (1991).

    Article  CAS  Google Scholar 

  51. C. Creton, E. Kramer, C. Hui, and H. Brown: Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25(12), 3075 (1992).

    Article  CAS  Google Scholar 

  52. T. Morkved, M. Lu, A. Urbas, E. Ehrichs, H. Jaeger, P. Mansky, and T. Russell: Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273(5277), 931 (1996).

    Article  CAS  Google Scholar 

  53. G. Kellog, D. Walton, A. Mayes, P. Gallagher, and S. Satija: Observed surface energy effects in confined diblock copolymers. Phys. Rev. Lett. 76(14), 2503 (1996).

    Article  Google Scholar 

  54. M. Husseman, E. Malmstrom, M. McNamara, M. Mate, D. Mecerreyes, D. Benoit, J. Hedrick, P. Mansky, E. Huang, T. Russell, and C. Hawker: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).

    Article  CAS  Google Scholar 

  55. T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. Stafford, E. Huang, M. Bal, M. Tuominen, C. Hawker, and T. Russell: Nanoscopic templates from oriented block copolymer films. Adv. Mater. 12(11), 787 (2000).

    Article  CAS  Google Scholar 

  56. K. Guarini, C. Black, and S. Yeuing: Optimization of diblock copolymer thin film self-assembly. Adv. Mater. 14(18), 1290 (2002).

    Article  CAS  Google Scholar 

  57. P. Alberius, K. Frindell, R. Hayard, E. Kramer, G. Stucky, and B. Chmelka: General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14(8), 3284 (2002).

    Article  CAS  Google Scholar 

  58. T. Clark, R. Ferrigno, J. Tien, K. Paul, and G. Whitesides: Template-directed self-assembly of 10-μm-sized hexagonal plates. J. Am. Chem. Soc. 124(19), 5419 (2002).

    Article  CAS  Google Scholar 

  59. C. Black: Polymer self-assembly as a novel extension to optical lithography. ACS Nano. 1(3), 147 (2007).

    Article  CAS  Google Scholar 

  60. F. Detcheverry, H. Kang, K. Daoulas, M. Muller, P. Nealey, and J. De Pablo: Monte Carlo simulations of a coarse grain model for block copolymers and nanocomposites. Macromolecules 41(13), 4989 (2008).

    Article  CAS  Google Scholar 

  61. K. Daoulas, M. Muller, M. Stoykovich, H. Kang, J. de Pablo, and P. Nealey: Directed copolymer assembly on chemical substrate patterns: A phenomenological and single-chain-in-mean-field simulations study of the influence of roughness in the substrate pattern. Langmuir 24(4), 1284 (2008).

    Article  CAS  Google Scholar 

  62. J. Bosworth, M. Paik, R. Ruiz, E. Schwartz, J. Huang, A. Ko, D. Smilgies, C. Black, and C. Ober: Control of self-assembly of lithographically patternable block copolymer films. ACS Nano. 2(7), 1396 (2008).

    Article  CAS  Google Scholar 

  63. J. Bosworth, C. Black, and C. Ober: Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano. 3(7), 1761 (2009).

    Article  CAS  Google Scholar 

  64. C. Braun, T. Richter, F. Schacher, A. Muller, E. Crossland, and S. Ludwigs: Block copolymer micellar nanoreactors for the directed synthesis of ZnO nanoparticles. Macromol. Rapid Commun. 31(8), 729 (2010).

    Article  CAS  Google Scholar 

  65. K. Sohn, K. Kojio, B. Berry, A. Karims, R. Coffin, G. Bazan, E. Kramer, M. Sprung, and J. Wang: Surface effects on the thin film morphology of block copolymers with bulk order-order transitions. Macromolecules 43(7), 3406 (2010).

    Article  CAS  Google Scholar 

  66. J. Hu, T. Odom, and C. Lieber: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32(5), 435 (1999).

    Article  CAS  Google Scholar 

  67. J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai: Nanotube molecular wires as chemical sensors. Science 287(5453), 622 (2000).

    Article  CAS  Google Scholar 

  68. R. Vander Wal: Substrate–support interactions in metal-catalyzed carbon nanofiber growth. Carbon 39(15), 2277 (2001).

    Article  CAS  Google Scholar 

  69. X. Liu, C. Lee, C. Zhou, and J. Han: Carbon nanotube field-effect inverters. Appl. Phys. Lett. 79(20), 3329 (2001).

    Article  CAS  Google Scholar 

  70. A. Javey, Q. Wang, A. Ural, Y. Li, and H. Dai: Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2(9), 929 (2002).

    Article  CAS  Google Scholar 

  71. N. Melosh, A. Boukai, F. Diana, G. Gerardot, A. Badolato, P. Petroff, and J. Heath: Ultrahigh-density nanowirelattices and circuits. Science 300(5616), 112 (2003).

    Article  CAS  Google Scholar 

  72. K. Hata, D. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima: Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700), 1362 (2004).

    Article  CAS  Google Scholar 

  73. P. Rothemund, X. Ekani-Nkodo, N. Papdakis, A. Kumar, D. Gygenson, and E. Winfree: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126(50), 16344 (2004).

    Article  CAS  Google Scholar 

  74. C. See and A. Harris: A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 46(4), 997 (2007).

    Article  CAS  Google Scholar 

  75. A. Hochbaum, R. Chen, R. Delgado, W. Liang, E. Garnett, M. Najarian, A. Majumdar, and P. Yang: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163 (2008).

    Article  CAS  Google Scholar 

  76. E. Joselevich, H. Dai, J. Liu, K. Hata, and A. Windle: Carbon nanotube synthesis and organization. Carbon Nanotubes. Topics Appl. Phys. 111, 101 (2008).

    Article  CAS  Google Scholar 

  77. J. Heath: Superlattice nanowire pattern transfer (SNAP). Acc. Chem. Res. 41(12), 1609 (2008).

    Article  CAS  Google Scholar 

  78. D. Wang, B. Sheriff, M. McAlpine, and J. Heath: Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Research 1(1), 9 (2008).

    Article  CAS  Google Scholar 

  79. A. Kumar and C. Zhou: The race to replace tin-doped indium oxide: Which material will win? ACS Nano. 4(1), 11 (2010).

    Article  CAS  Google Scholar 

  80. H. Maune, S. Han, R. Barish, M. Bockrath, W. Goddard, P. Rothemund, and E. Winfree: Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol. 5(1), 61 (2010).

    Article  CAS  Google Scholar 

  81. D. Tomalia, A. Naylor, and W. Goddard: Starburst dendrimers—Molecular-level control of size, shape, surface-chemistry, topology, and flexibility from atoms to macroscopic matter. Angelwandte Chemie, Int. ed.in English. 29(2) 138 (1990).

    Article  Google Scholar 

  82. H. Dai: Carbon nanotubes: Opportunities and challenges. Surf. Sci. 500 (1) 218 (2002).

    Article  CAS  Google Scholar 

  83. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, and A. Firsov: Electric field effect in atomically thin carbon films. Science 306(5296), 6666 (2004).

    Google Scholar 

  84. A. Geim and K. Novoselev: The rise of graphene. Nat. Mater. 6(3), 183 (2007).

    Article  CAS  Google Scholar 

  85. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 1229 (2008).

    Article  CAS  Google Scholar 

  86. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai: Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 20 (2008).

    Google Scholar 

  87. D. Wang, R. Kou, D. Choi, Z. Yang, Z. Nie, J. Li, L. Saraf, D. Hu, J. Zhang, G. Graff, J. Liu, M. Pope, and I. Aksay: Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage. ACS Nano. 4(3), 1587 (2010).

    Article  CAS  Google Scholar 

  88. Y. Ouyang, H. Dai, and J. Guo: Projected performance advantage of multilayer graphene nanoribbons as a transistor channel. Nano Research 3(1), 8 (2010).

    Article  CAS  Google Scholar 

  89. C. Hawker and J. Frechet: Unusual macromolecular architectures: The convergent growth approach to dendritic polyesters and novel block copolymers. J. Am. Chem. Soc. 114(22), 8405 (1992).

    Article  CAS  Google Scholar 

  90. J. Frechet: Functional polymers and dendrimers: Reactivity, molecular architecture, and interfacial energy. Science 263(5154), 1710 (1994).

    Article  CAS  Google Scholar 

  91. F. Zeng and S. Zimmerman: Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev. 97(5), 1681 (1997).

    Article  CAS  Google Scholar 

  92. D. Tully, K. Wilder, J. Frechet, A. Trimble, and C. Quate: Dendrimer-based self-assembled monolayers as resists for scanning probe lithography. Adv. Mater. 11(4), 314 (1999).

    Article  CAS  Google Scholar 

  93. J. Tour: Conjugated macromolecules of precise length and constitution. Organic synthesis for the construction of nanoarchitectures. Chem. Rev. 96(1), 537 (2001).

    Article  Google Scholar 

  94. S. Grayson and J. Frechet: Convergent dendrons and dendrimers: From synthesis to applications. Chem. Rev. 101(12), 3819 (2001).

    Article  CAS  Google Scholar 

  95. J. Serin, D. Brousmiche, and J. Frechet: Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun. (Camb.). 22, 2605 (2002).

    Article  Google Scholar 

  96. A. Bosman, R. Vestberg, A. Heumann, J. Frechet, and C. Hawker: A modular approach toward functionalized three-dimensional macromolecules: From synthetic concepts to practical applications. J. Am. Chem. Soc. 125(3), 715 (2003).

    Article  CAS  Google Scholar 

  97. M. Muthukumar, C. Ober, and E. Thomas: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225 (1997).

    Article  CAS  Google Scholar 

  98. M. Park, C. Harrison, P. Chaikin, R. Register, and D. Adamson: Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276(5317), 1401 (1997) (Print).

    Article  CAS  Google Scholar 

  99. L. Rockford, P. Mansky, and T. Russell: Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 82(12), 2602 (1999).

    Article  CAS  Google Scholar 

  100. J. Heath and M. Ratner: Molecular electronics. Phys. Today 56(5), 43 (2003).

    Article  CAS  Google Scholar 

  101. A. De Silva, A. Prasanna, and N. McClenaghan: Molecular-scale logic gates. Chemistry 10(3), 574 (2004).

    Article  CAS  Google Scholar 

  102. P. Rothemund, N. Papdakis, and E. Winfree: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041 (2004).

    Article  CAS  Google Scholar 

  103. C. Lin, Y. Liu, S. Rinker, and H. Yan: DNA tile based self-assembly: Building complex nanoarchitectures. ChemPhysChem 7(8), 1641 (2006).

    Article  CAS  Google Scholar 

  104. P. Rothemund: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297 (2006).

    Article  CAS  Google Scholar 

  105. R. Kershner, L. Bozano, C. Micheel, A. Hung, A. Fornof, J. Cha, C. Rettner, M. Bersani, J. Frommer, P. Rothemund, and G. Wallraff: Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nat. Nanotechnol. 4(9), 557 (2009).

    Article  CAS  Google Scholar 

  106. J. Cha and G. Stucky, D. Morse, and T. Deming: Biomimetic synthesis of ordered silica structures mediated by block copolypeptides. Nature 403(6767), 289 (2000).

    Article  CAS  Google Scholar 

  107. R. Ulijn and A. Smith: Designing peptide-based nanomaterials. Chem. Soc. Rev. 37(4), 664 (2008).

    Article  CAS  Google Scholar 

  108. E. Johnson, D. Adams, and P. Cameron: Directed self-assembly of dipeptides to form ultrathin hydrogel membranes. J. Am. Chem. Soc. 132(14), 5130 (2010).

    Article  CAS  Google Scholar 

  109. P. Allen, J. Downer, G. Hastings, H. Melville, P. Molyneux, and J. Urwin: New methods of preparing block copolymers 910–912. Nature 177(4516), 903 (1956).

    Article  Google Scholar 

  110. J.R. Urwin: The preparation of block copolymer of styrene and methyl methacrylate. J. Polym. Sci., Polym. Phys. Ed. 27(115), 580 (1958).

    CAS  Google Scholar 

  111. A. Dunn and H. Melville: Synthesis of “block” copolymers. Nature 169(4304), 699 (1952).

    Article  CAS  Google Scholar 

  112. R.J. Orr and H.L. Williams: The synthesis and identification of block polymers of butadiene and styrene. J. Am. Chem. Soc. 79(12) 3137 (1957).

    Article  CAS  Google Scholar 

  113. G. Galli, E. Chiellini, and C. Ober: Polyesters of glycolethers—Syntheses and liquid-crystalline property. Chim. Ind. 63(11), 777 (1981).

    Google Scholar 

  114. C. Ober, J. Jin, and R. Lenz: Liquid-crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 59, 103 (1994).

    Article  Google Scholar 

  115. E. Balcerzyk, H. Pstrocki, and G. Wlodarski: Morphology of polymer of ethylene sulfide and its block copolymer with styrene. J. Appl. Polym. Sci. 11(7), 1179 (1967).

    Article  CAS  Google Scholar 

  116. G. Galli, E. Benedetti, E. Chiellini, C. Ober, and R. Lenz: Phase transitions in alkylene glycol terephthalate copolyesters containing mesogenic P-oxybenzoate units. Polym. Bull. 5 (9), 497 (1981).

    CAS  Google Scholar 

  117. G. Galli, E. Chiellini, C. Ober, and R. Lenz: Liquid-crystalline polymers & structurally-ordered thermotropic polyesters of glycolethers. Makromolekulare Chemie—Macromolecular Chemistry and Physics. 6183(11), 2693 (1982).

    Article  Google Scholar 

  118. T. Ohta and K. Kawasaki: Equilibrium morphology of block copolymer melts. Macromolecules 19(10), 2621 (1986).

    Article  CAS  Google Scholar 

  119. F.S. Bates and G.H. Fredrickson: Block copolymer thermodynamics—Theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  CAS  Google Scholar 

  120. M. Matsen and F. Bates: Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29(4), 1091 (1996).

    Article  CAS  Google Scholar 

  121. M. Husseman, E. Malmstrom, M. McNamara, M. Mate, D. Mecerreyes, D. Benoit, J. Hedrick, P. Mansky, T. Russell, and C. Hawker: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).

    Article  CAS  Google Scholar 

  122. S. Kim, H. Solak, M. Stoykovich, N. Ferrier, J. de Pablo, and P. Nealey: Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411 (2003).

    Article  CAS  Google Scholar 

  123. D. Herr: The extensibility of optical patterning via directed self-assembly of nano-engineered imaging materials. NaFuture Fab International 18, 93 (2005).

    Google Scholar 

  124. J. Cheng and C. Ross: Directed self-assembly of block copolymers. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).

    Google Scholar 

  125. C.A. Ross, V. Chuang, and Y.S. Jung: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).

    Google Scholar 

  126. B. Zhao and W. Brittain: Polymer brushes: Surface-immobilized macromolecules. Prog. Polym. Sci. 25(5), 677 (2000).

    Article  CAS  Google Scholar 

  127. M. Baum and W. Brittain: Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique. Macromolecules 35(3), 610 (2002).

    Article  CAS  Google Scholar 

  128. B. Zhao and W. Brittain: Synthesis, characterization, and properties of tethered polystyrene–b-polyacrylate brushes on flat silicate substrates. Macromolecules 33(23), 8813 (2000).

    Article  CAS  Google Scholar 

  129. R. Ulrich, A. Du Chesne, M. Templin, and U. Wiesner: Nano-objects with controlled shape, size, and composition from block copolymer mesophases. Adv. Mater. 11(2), 141 (1999).

    Article  CAS  Google Scholar 

  130. J. Amalvy, M. Percy, S. Armes, and H. Wiese: Synthesis and characterization of novel film-forming vinyl polymer/silica colloidal nanocomposites. Langmuir 17(16), 4770 (2001).

    Article  CAS  Google Scholar 

  131. T. Fujimoto, H. Zhang, T. Kazama, Y. Isono, H. Hasegawa, and T. Hashimoto: Preparation and characterization of novel star-shaped copolymers having 3 different branches. Polymer (Guildf.). 33(10), 2208 (1992).

    Article  CAS  Google Scholar 

  132. M. Husseman, E. Malmstrom, M. McNamara, M. Mate, D. Mecerreyes, D. Genoit, J. Hedrick, P. Mansky, E. Huang, T. Russell, and C. Hawker: Controlled synthesis of polymer brushes by “living” free radical polymerization techniques. Macromolecules 32(5), 1424 (1999).

    Article  CAS  Google Scholar 

  133. L. Leibler and P. Pincus: Ordering transition of copolymer micelles. Macromolecules 17(12), 2922 (1984).

    Article  CAS  Google Scholar 

  134. H. Tanaka, H. Hasegawa, and T. Hashimoto: Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low-molecular-weight homopolymers. Macromolecules 24(1), 240 (1991).

    Article  CAS  Google Scholar 

  135. S. Sakurai, H. Kawada, T. Hashimoto, and L. Fetters: Thermoreversible morphology transition between spherical and cylindrical microdomains of block-copolymers. Macromolecules 26(21), 5796 (1993).

    Article  CAS  Google Scholar 

  136. T. Pakula, K. Saijo, H. Kawai, and T. Hashimoto: Deformation-behavior of styrene butadiene styrene triblock copolymer with cylindrical morphology. Macromolecules 18(6), 1294 (1985).

    Article  CAS  Google Scholar 

  137. K. Dai and E. Kramer: Determining the temperature-dependent Flory Interaction parameter for strong immiscible polymers from block-copolymer segregation measurements. Polymer (Guildf.). 35(26), 157 (1994).

    Article  CAS  Google Scholar 

  138. P. Alberius, K. Frindell, R. Hayward, E. Kramer, G. Stucky, and B. Chmelka: General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14(8), 3284 (2002).

    Article  CAS  Google Scholar 

  139. K. Shull, E. Kramer, F. Bates, and J. Rosedale: Self-diffusion of symmetrical diblock copolymer melts near the ordering transition. Macromolecules 24(6), 1383 (1991).

    Article  CAS  Google Scholar 

  140. C. Chen and J. White: Compatibilizing agents in polymer blends—Interfacial-tension, phase morphology, and mechanical-properties. Polym. Eng. Sci. 33(14), 923 (1993).

    Article  CAS  Google Scholar 

  141. L. Zhu, S. Cheng, B. Calhoun, Q. Ge, R. Quirk, E. Thomas, B. Hsiao, F. Yeh, and B. Lotz: Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer. J. Am. Chem. Soc. 122(25), 5957 (2000).

    Article  CAS  Google Scholar 

  142. L. Zhu, S. Cheng, B. Calhoun, Q. Ge, R. Quirk, E. Thomas, B. Lotz, J. Wittmann, B. Hsiao, F. Yeh, and L. Liu: Phase structures and morphologies determined by self-organization, vitrification, and crystallization: Confined crystallization in an ordered lamellar phase of PEO–b-PS diblock copolymer. Polymer (Guildf.). 42(13), 5829 (2001).

    Article  CAS  Google Scholar 

  143. C. Park, J. Yoon, and E. Thomas: Enabling nanotechnology with self-assembled block copolymer patterns. Polymer (Guildf.). 44(22), 6725 (2003).

    Article  CAS  Google Scholar 

  144. C. Park, J. Yoon, and E. Thomas: Erratum to: Enabling nanotechnology with self-assembled block copolymer patterns. Polymer (Guildf.). 44(25), 7779 (2003).

    Article  CAS  Google Scholar 

  145. M. Muthukumar, C. Ober, and E. Thomas: Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277(5330), 1225 (1997).

    Article  CAS  Google Scholar 

  146. D. Hajduk, P. Harper, S. Gruner, C. Honeker, G. Kim, E. Thomas, and L. Fetters: The Gyroid—A new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27(15), 4063 (1994).

    Article  CAS  Google Scholar 

  147. E. Thomas, D. Anderson, C. Henkee, and D. Hoffman: Periodic area-minimizing surfaces in block copolymers. Nature 334(6183), 598 (1988).

    Article  CAS  Google Scholar 

  148. K. Winey, E. Thomas, and L. Fetters: Isothermal morphology diagrams for binary blends of diblock copolymer and homopolymer. Macromolecules 25(10), 2645 (1992).

    Article  CAS  Google Scholar 

  149. T. Hashimoto, H. Tanaka, and H. Hasegawa: Ordered structure in mixtures of a block copolymer and homopolymers. 2. Effects of Molecular-weights of homopolymers. Macromolecules 23(20), 4378 (1990).

    Article  CAS  Google Scholar 

  150. T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa: Ordered structure in blends of block copolymers. 1. Miscibility criterion for lamellar block copolymers. Macromolecules 26(11), 2895 (1993).

    Article  CAS  Google Scholar 

  151. E. Kim, E. Kramer, W. Wu, and P. Garrett: Diffusion in blends of poly(methyl methacrylate) and poly (styrene-co-acrylonitrile). Polymer (Guildf.). 35(26), 5705 (1994).

    Article  Google Scholar 

  152. C. Creton, E. Kramer, C. Hui, and H. Brown: Failure mechanisms of polymer interfaces reinforced with block copolymers. Macromolecules 25(12), 3075 (1992).

    Article  CAS  Google Scholar 

  153. P. Mansky, Y. Liu, E. Huang, T. Russell, and C. Hawker: Controlling polymer-surface interactions with random copolymer brushes. Science 275(5305), 1458 (1997).

    Article  CAS  Google Scholar 

  154. P. Mansky, P. Chaikin, and E. Thomas: Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 30(8), 1987 (1995).

    Article  CAS  Google Scholar 

  155. P. Mansky, C. Harrison, P. Chaikin, R. Register, and N. Yao: Nanolithographic templates from diblock copolymer thin films. Appl. Phys. Lett. 68(18), 2586 (1996).

    Article  CAS  Google Scholar 

  156. T. Morkved, M. Lu, A. Urbas, E. Ehrichs, H. Jaeger, P. Mansky, and T. Russell: Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273(5277), 931 (1996).

    Article  CAS  Google Scholar 

  157. L. Rockford, Y. Liu, P. Mansky, and T. Russell: Polymers on nanoperiodic, heterogeneous surfaces. Phys. Rev. Lett. 83(12), 2602 (1999).

    Article  Google Scholar 

  158. P. Mansky, T. Russell, C. Hawker, M. Pitsikalis, and J. Mays: Ordered diblock copolymer films on random copolymer brushes. Macromolecules 30(22), 6810 (1997).

    Article  CAS  Google Scholar 

  159. M. Park, C. Harrison, P. Chaikin, R. Register, and D. Adamson: Block copolymer lithography: Periodic arrays of similar to 10(11) holes in 1 square centimeter. Science 276(5317), 1401 (1997).

    Article  CAS  Google Scholar 

  160. Daniel J.C. Herr: The Extensibility of optical patterning via Directed self-Assembly of Nano-Engineeried Imaging Materials, Future Fab International, Issue 18, pp. 93–96 (Reproduced by permission from Futur Fab International)} (January 2005).

    Google Scholar 

  161. S. Darling: Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32(10), 1152 (2007).

    Article  CAS  Google Scholar 

  162. SRC-SEMATECH joint DSA project.

  163. M. Stoykovich, K. Daoulas, M. Muller, H. Kang, J. De Pablo, and P. Nealey: Remediation of line edge roughness in chemical nanopatterns by the directed assembly of overlying block copolymer films. Macromolecules 43(5), 2334 (2010).

    Article  CAS  Google Scholar 

  164. Tables LITH 3. Lithography Technology Requirements and LITH4a. Resist Requirements [2015, except where otherwise noted], International Technology Roadmap for Semiconductors, 2009. International SEMATECH, Austin, TX, 2009.

    Google Scholar 

  165. G.S.W. Craig and P.F. Nealey: Exploring the manufacturability of using block copolymers as resist materials in conjunction with advanced lithographic tools. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).

    Google Scholar 

  166. Reckoned from Paul Nealey, Insertion of self-assembling block copolymer materials into the lithographic process, SRC TECHCON 2007 Session on Novel Nano Assembly, Proceedings, File: E002785_pnealey.pdf (2007).

  167. R. Farrell, T. Fitzgerald, D. Borah, J. Holmes, and M. Morris: Chemical interactions and their role in the microphase separation of block copolymer thin films. Int. J. Mol. Sci. 10(9), 3671 (2009).

    Article  CAS  Google Scholar 

  168. M. Hammond, E. Cochran, G. Fredrickson, and E. Kramer: Temperature dependence of order, disorder, and defects in laterally confined diblock copolymer cylinder monolayers. Macromolecules 38(15), 6575 (2005).

    Article  CAS  Google Scholar 

  169. A. Bosse, S. Sides, K. Katsov, C. Garcia-Cervera, and G. Fredrickson: Defects and their removal in block copolymer thin film simulations. J. Polym. Sci., B, Polym. Phys. 44(18), 2495 (2006).

    Article  CAS  Google Scholar 

  170. P. Nealey, A. Bowling, L. Capodieci, N. Eib, D.J.C. Herr, F. Robertson, and V. Zhirnov: The Use of Directed Self-Assembly to Extend CMOS and Post CMOS Technologies, 2005 SRC ETAB Summer Study, Vail, CO [June 27, 2005] Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.

  171. E. Edwards, M. Muller, M. Stoykovich, H. Solak, J. de Pablo, and P. Nealey: Dimensions and shapes of block copolymer domains assembled on lithographically defined chemically patterned substrates. Macromolecules 40(1), 90 (2007).

    Article  CAS  Google Scholar 

  172. M. Stoykovich, H. Kang, J. de Pablo, and P. Nealey: Directed copolymer assembly on chemical substrate patterns: A phenomenological and single-chain-in-mean-field simulations study of the influence of roughness in the substrate pattern. Langmuir 24(4), 1284 (2008).

    Article  CAS  Google Scholar 

  173. G. Liu, C. Thomas, G. Craig, and P. Nealey: Integration of density multiplication in the formation of device-oriented features. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers, (2010).

    Google Scholar 

  174. C-C. Liu, E. Han, S. Ji, F. Detcheverry, J. de Pabo, P. Gopalan, and P. Nealey: Density multiplication of lamellae-forming block copolymer on chemical substrates with weakly preferential background. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).

    Google Scholar 

  175. C. Liu, T. Chang, A. Raub, H. Yoshida, T. Wallow, E. Han, H. Kang, P. Gopalan, S. Brueck, Z. Ma, and P. Nealey: The fabrication and characterization of nanowire FETs by block copolymer multiple patterning. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers, (2010).

    Google Scholar 

  176. E. Edwards: Control over the shape of nanostructures in block copolymer lithography and implications for nonmanufacturing. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).

    Google Scholar 

  177. S.R.C. Event: E002515. SRC-NNI-CWG2 Semiconductor Research Corporation—National Nanotechnology Initiative Consultative Working Group 2 on Novel Materials and Assembly Methods for Extending Charge Based Technologies, Workshop on Directed Self-Assembling Materials for Nanopatterning, University of Wisconsin at Madison, June 16, 2005, PN review (2006).

  178. D. Zhao, J. Feng, Q. Huo, and N. Melosh: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Angstrom pores. Science 279(5350), 548 (1998).

    Article  CAS  Google Scholar 

  179. P. Yang, D. Zhoa, D. Margolese, B. Chmelka, and G. Stucky: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707), 152 (1998).

    Article  CAS  Google Scholar 

  180. R. Pai, R. Humayun, M. Schulberg, A. Sengupta, J. Sun, and J. Watkins: Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 303(5657), 507 (2004).

    Article  CAS  Google Scholar 

  181. M. Wright, J. Watkins, T. Russell, S. Desu, M. Tuominen, S. Bhatia, V. Rotello, K. Carter, A. Singh, M. Mehta, J. Fountain, and J. Capistran: Center for Hierarchical Manufacturing. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).

    Google Scholar 

  182. R. Pai and J. Watkins: Synthesis of mesoporous organosilicate films in supercritical carbon dioxide. Adv. Mater. 18(2), 241 (2006).

    Article  CAS  Google Scholar 

  183. V. Tirumala, R. Pai, S. Agarwal, J. Testa, G. Bhatnagar, A. Romang, C. Chandler, B. Gorman, R. Jones, E. Lin, and J. Watkins: Mesoporous silica films with long-range order prepared from strongly segregated block copolymer/homopolymer blend templates. Chem. Mater. 19(24), 5868 (2007).

    Article  CAS  Google Scholar 

  184. S. Nagarajan, T. Russell, and J. Watkins: Dual-tone patterned mesoporous silicate films template from chemically-amplified block copolymers. Adv. Funct. Mater. 19(17), 2728 (2009).

    Article  CAS  Google Scholar 

  185. M.P. Stoykovich, H. Kang, K. Ch. Daoulas, G. Liu, C-C. Liu, J.J. de Pablo, M. Muller, and P.F. Nealey: Directed self-assembly of block copolymers for nanolithography: Fabrication of isolated features and essential integrated circuit geometries. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).

    Google Scholar 

  186. P. Nealey: Control materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).

    Google Scholar 

  187. S. Park, B. Kim, C. Hawker, E. Kramer, J. Bang, and J. Ha: Controlled ordering of block copolymer thin films by the addition of hydrophilic nanoparticles. Macromolecules 40, 8119 (2007).

    Article  CAS  Google Scholar 

  188. M. Stoykovich, H. Kang, K. Daoulas, G. Liu, C. Liu, J. de Pablo, M. Muller, and P. Nealey: Directed Self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries. ACS Nano 1. 3, 168 (2007).

    Article  CAS  Google Scholar 

  189. C. Ross: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2004).

    Google Scholar 

  190. R. Segalman, H. Yokoyama, and E. Kramer: Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13(15), 1152 (2001).

    Article  CAS  Google Scholar 

  191. C. Ross: Templated self-assembly of block copolymers for nanolithographic device fabrication. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).

    Google Scholar 

  192. H. Kang, G.S.W. Craig, and P.F. Nealey: Directed assembly of asymmetric ternary block copolymer–homopolymer blends using symmetric block copolymer into checkerboard trimming chemical pattern. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2008).

    Google Scholar 

  193. H. Kang and P. Nealey: Directed assembly of compositionally asymmetric ternary blends thin films on checkerboard trimming chemical patterner companies, participating agencies, and qualified researchers (2008).

    Google Scholar 

  194. H. Kang, G. Craig, and P. Nealey: Directed assembly of asymmetric ternary block copolymer-homopolymer blends using symmetric block copolymer into checkerboard trimming chemical pattern. J. Vac. Sci. Technol. B 26(6), 2495 (2008).

    Article  CAS  Google Scholar 

  195. E. Edwards, M. Stoykovich, P. Nealey, and H. Solak: Binary blends of diblock copolymers as an effective route to multiple length scales in perfect directed self-assembly of diblock copolymer thin films. J Vac. Sci. Technol. B 24(1), 340 (2006).

    Article  CAS  Google Scholar 

  196. K. Daoulas, M. Muller, M. Stoykovich, Y. Papakonstantopoulos, J. De Pablo, P. Nealey, S. Park, and H. Solak: Directed assembly of copolymer materials on patterned substrates: Balance of simple symmetries in complex structures. J. Polym. Sci., B, Polym. Phys. 44(18), 2589 (2006).

    Article  CAS  Google Scholar 

  197. J. Cheng, C. Rettner, D. Sanders, H. Kim, and W. Hinsberg: Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155 (2008).

    Article  CAS  Google Scholar 

  198. J. Bosworth, C. Black, and C. Ober: Selective area control of self-assembled pattern architecture using a lithographically patternable block copolymer. ACS Nano. 3(7), 1761 (2009).

    Article  CAS  Google Scholar 

  199. M. Fritze, T. Bloomstein, B. Tyrrell, T. Fedynshyn, N. Efremow, D. Hardy, S. Cann, D. Lennon, S. Spector, and M. Rothschild: Hybrid optical maskless lithography: Scaling beyond the 45 nm node. Macromolecules 30(22), 6810 (1997).

    Article  Google Scholar 

  200. M. Stoykovich, E. Edwards, H. Kang, C. Liu, A. Welander, Y. Na, S. Park, F. Cerrina, J. de Pablo, and P. Nealey: Insertion of Self-Assembling Block Copolymer Materials into the Lithographic Process, TECHCON (2007). Private communication © 2007 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.

  201. J. Cheng, C. Rettner, D. Sanders, H. Kim, and W. Hinsberg: Dense self-assembly on sparse chemical patterns: Rectifying and multiplying lithographic patterns using block copolymers. Adv. Mater. 20, 3155 (2008).

    Article  CAS  Google Scholar 

  202. Proceedings of SPIE, 7637 No. 76370G-10. Private communication © 2007 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers.

  203. C. Black and O. Bezencenet: Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Trans. NanoTechnol. 3(3), 412 (2004).

    Article  Google Scholar 

  204. R. Ruiz, R. Sandstrom, and C. Black: Induced orientational order in symmetric diblock copolymer thin films. Adv. Mater. 19(4), 587 (2007).

    Article  CAS  Google Scholar 

  205. J. Cheng and C. Ross: Directed self-assembly of block copolymers. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2005).

    Google Scholar 

  206. R. Ruiz, H. Kang, F. Detcheverry, E. Dobisz, D. Kercher, T. Albrecht, J. De Pablo, and P. Nealey: Density multiplication and improved lithography by directed block copolymer assembly. Science 321(5891), 936 (2008).

    Article  CAS  Google Scholar 

  207. P.F. Nealey and C. Liu: Materials and processes for nanoscale patterning. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2010).

    Google Scholar 

  208. J. Yang, Y. Jung, J. Chang, R. Mickiewicz, A. Alexander-Katz, C. Ross, and K. Berggren: Complex self-assembled patterns using sparse commensurate templates with locally varying motifs. Nat. Nanotechnol. 5(4), 256 (2010).

    Article  CAS  Google Scholar 

  209. S. Kim, H. Oh, Y. Jung, and A. Ilsin: A study of virtual lithography process for polymer directed self-assembly. Microelectron. Eng. 87 (5), 883 (2010).

    Article  CAS  Google Scholar 

  210. S. Kim, M. Misner, M. Kimura, and T. Russell: Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16(3), 226 (2004).

    Article  CAS  Google Scholar 

  211. G.S.W. Craig, H. Kang, and P.F. Nealey: Equilibration of block copolymer films on chemically patterned surfaces. Semiconductor Research Corporation, Research Engine. Web Publication P021065 (2007).

    Google Scholar 

  212. P.F. Nealey: Materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).

    Google Scholar 

  213. S. Zhu, R. Gambino, M. Rafailovich, J. Sokolov, S. Schwarz, and R. Gomez: Microscopic magnetic characterization of submicron cobalt islands prepared using self-assembled polymer masking technique. IEEE Trans. Magn. 33(5), 3022 (1997).

    Article  CAS  Google Scholar 

  214. A. Welander, H. Kang, K. Stuen, H. Solak, M. Muller, J. De Pablo, and P. Nealey: Rapid directed assembly of block copolymer films at elevated temperatures. Macromolecules 41(8), 2759 (2008).

    Article  CAS  Google Scholar 

  215. C. Black, K. Guarini, K. Milkove, S. Banker, T. Russell, and M. Tuominen: Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79(3), 409 (2001).

    Article  CAS  Google Scholar 

  216. C. Black, K. Guarini, K. Milkove, S. Baker, T. Russell, and M. Tuominen: Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Phys. Rev. Lett. 79(3), 409 (2001).

    CAS  Google Scholar 

  217. K. Guarini, C. Black, Y. Zhang, H. Kim, E. Sikorski, and V. Babich: Process integration of self-assembled polymer templates into silicon nanofabrication. J. Vac. Sci. Technol. B 20(6), 2788 (2002).

    Article  CAS  Google Scholar 

  218. C.T. Black: Self-aligned self-assembly of multi-nanowire silicon field effect transistors. Appl. Phys. Lett. 87, 163116 (2005).

    Article  CAS  Google Scholar 

  219. R. Johnson: Semiconductor Glossary. Semiconductor OneSource website. Friday, September 10, 2010 at http://www.eetimes.com/electronics-news/4071360/IBM-commits-to-ultimate-dielectric-air-gaps (2007).

    Google Scholar 

  220. E. Kramer: Dynamic chi and anneal time effect on defects, SRC NNI CWG2 Workshop on Challenges in Directed Self-assembly (2006), p. 20.

  221. M. Hammond and E. Kramer: Edge effects on thermal disorder in laterally confined diblock copolymer cylinder monolayers. Macromolecules 39, 1538 (2006).

    Article  CAS  Google Scholar 

  222. S. Ponoth, D. Horak, M.E. Colburn, G. Breyta, E. Huang, J. Sucharitaves, H. Landis, A. Lisi, X.S. Liu, T. Vo, R. Johnson, W. Li, S. Purushothaman, S. Cohen, C-K. Hu, H-C. Kim, L. Clevenger, N. Fuller, T. Nogami, T. Spooner, and D. Edelstein: The Electrochemical Society, Meeting, Honolulu, HI [October 12–17, 2008]. Meeting Abstract - Electrochem. Soc. 802, 2074 (2008).

  223. C. Black and O. Bezencenet: Nanometer-scale pattern registration and alignment by directed diblock copolymer self-assembly. IEEE Transactions on Nanotechnology 3, 412 (2004).

    Google Scholar 

  224. C. Hawker and T. Russell: Block copolymer lithography: Merging of “bottom up” with “top down” processes. MRS Bull. 30, 952 (2005).

    Article  CAS  Google Scholar 

  225. P. Nealey: Materials and processes for sub-32 nm lithography. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2006).

    Google Scholar 

  226. P. Nealey: Report on lithographic properties of block copolymer directed assembly. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2008).

    Google Scholar 

  227. H. Kang and P. Nealey: Directed assembly of compositionally asymmetric Ternary blends thin films on checkerboard trimming chemical pattern. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2009).

    Google Scholar 

  228. K. Guarini, C. Black, K. Milkove, and R. Sandstrom: Nanoscale patterning using self-assembled polymers for semiconductor application. J. Vac. Sci. Technol. B 19(6), 2784 (2001).

    Article  CAS  Google Scholar 

  229. F. Schellenberg: Presentation. IBM Workshop on Nanopatterns from Block Copolymer Self-Assembly (2008).

  230. S.M. Park, M.P. Stoykovich, R. Ruiz, Y. Zhang, C.T. Black, and P.F. Nealey: Directed assembly of lamellae-forming block copolymers by using chemically and topographically patterned substrates. Private communication © 2010 by Semiconductor Research Corporation. Access to this information is limited to member companies, participating agencies, and qualified researchers (2007).

    Google Scholar 

  231. B. Jeong, Y. Bae, D. Lee, and S. Kim: Biodegradable block copolymers as injectable drug delivery systems. Nature 388(6645), 860 (1997).

    Article  CAS  Google Scholar 

  232. K. Kataoka, A. Harada, and Y. Nagasaki: Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Delivery Rev. 47(1), 113 (2001).

    Article  CAS  Google Scholar 

  233. R. Duncan: The dawning era of polymer therapeutics. Nat. Rev. Drug Discovery 2(5), 347 (2003).

    Article  CAS  Google Scholar 

  234. C. Lee, J. MacKay, J. Frechet, and F. Szoka: Designing dendrimers for biological applications. Nat. Biotechnol. 23(12), 1517 (2005).

    Article  CAS  Google Scholar 

  235. L. Beecroft and C. Ober: Nanocomposite materials for optical applications. Chem. Mater. 9(6), 1302 (1997).

    Article  CAS  Google Scholar 

  236. C. Ross, H. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M.C. Abraham, and R.J. Ram,: Fabrication of patterned media for high-density magnetic storage. J. Vac. Sci. Technol. B 17(6), 3168 (1999).

    Article  CAS  Google Scholar 

  237. C. Ross: Patterned magnetic recording media. Annu. Rev. Mater. Res. 31, 203 (2001).

    Article  CAS  Google Scholar 

  238. J. Cheng, C. Ross, V. Chan, E. Thomas, R. Lammertink, and G. Vancso: Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13(15), 1174 (2001).

    Article  CAS  Google Scholar 

  239. D. Yang, S. Chang, and C. Ober: Molecular glass photoresists for advanced lithography. J. Mater. Chem. 16(18), 1693 (2006).

    Article  CAS  Google Scholar 

  240. S. Ji, C. Liu, G. Liu, and P. Nealey: Molecular transfer printing using block copolymers. ACS Nano. 4(2), 599 (2010).

    Article  CAS  Google Scholar 

  241. M. Kawa and J. Frechet: Self-assembled lanthanide-cored dendrimer complexes: Enhancement of the luminescence properties of lanthanide ions through site-isolation and antenna effects. Chem. Mater. 10(1), 286 (1998).

    Article  CAS  Google Scholar 

  242. J. Serin, D. Brousmiche, and J. Frechet: Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. Chem. Commun. (Camb.). 22, 2605 (2002).

    Article  Google Scholar 

  243. W. Dichtel, S. Hecht, and J. Frechet: Functionally layered dendrimers: A new building block and its application to the synthesis of multichromophoric light-harvesting systems. Org. Lett. 7(20), 4451 (2005).

    Article  CAS  Google Scholar 

  244. M. Oar, W. Dichtel, J. Serin, J. Frechet, J. Rogers, J. Slagle, P. Fleitz, L. Tan, Y. Ohulchanskyy, and P. Prasad: Light-harvesting chromophores with metalated porphyrin cores for tuned photosensitization of singlet oxygen via two-photon excited FRET. Chem. Mater. 18(16), 3682 (2006).

    Article  CAS  Google Scholar 

  245. SEMATECH Workshop on Directed Self Assembly: Kobe, Japan (October 20, 2010). This event was sponsored by SEMATECH and supported by the ITRS Emerging Research Materials Working Group.

  246. http://www.ornl.gov/sci/techresources/Human_Genome/project/info.shtml, updated Wednesday, March 26, 2008.

  247. M. Lynch: Evolution of the mutation rate. Trends Genet. 26(8), 345 (2010).

    Article  CAS  Google Scholar 

  248. M. Lynch: The rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA. 107, 961 (2010).

    Article  CAS  Google Scholar 

  249. J.F. Crow: The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1(1), 40 (2000).

    Article  CAS  Google Scholar 

  250. J. Ruzyllo: IBM Commits to Ultimate Dielectric: Air Gaps. EE Times Web site on Friday, September 10, 2010 at http://www.semi1source.com/glossary/default.asp?searchterm=critical+dimension%2C+CD (2009).

    Google Scholar 

  251. B. Haran, L. Kumar, L. Adam, J. Chang, S. Kanakasbapathy, D. Horak, S. Fan, and J. Chen: 22nm Technology Compatible Fully Functional 0.1 μm2 6T-SRAM cell. IEEE Xplore Digital Library (2008), p. 1–4.

    Google Scholar 

  252. International Technology Roadmap for Semiconductors: 2009 Edition, Environment, Safety and Health Chapter (2009), p. 1–30. International SEMATECH, Austin, TX.

    Google Scholar 

  253. ITRS Home: ITRS website on Friday, September 10, 2010 at http://www.itrs.net/ (2010).

    Google Scholar 

  254. ITRS Teams: ITRS website on Friday, September 10, 2010 at http://www.itrs.net/ (2010).

    Google Scholar 

  255. The International Roadmap Committee Position on Technology Pacing: ITRS Web site on Friday, September 10, 2010 at http://www.itrs.net/links/2007ITRS/IRCPosition.html (2010).

  256. L. Thompson and R. Kerwin: Polymer resist systems for photolithography and electron lithography. Annu. Rev. Mater. Sci. 6, 267 (1976).

    Article  CAS  Google Scholar 

  257. T. Fedynshyn, D. Astolfi, R. Goodman, S. Cann, and J. Roberts: Contributions of resist polymers to innate material roughness. J. Vac. Sci. Technol. B 26(6), 2281 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Many people have contributed to moving directed self-assembly technology forward as a potential patterning option. Special thanks go to Drs. Michael Garner, Harry Levinson, Lloyd Litt, William Hinsberg, and Wayne Cascio for their thoughtful recommendations and contributions. The author also thanks those teams who continue to provide the needed theory, modeling, verification, and ongoing assessment. This includes colleagues within SRC, its member companies, and its academic research community; the ITRS Emerging Research Materials, Lithography, and Metrology Working Groups; and many others who helped to lay the foundations for understanding these networks of material systems.

Unless otherwise noted, the following definitions may be found in the Semiconductor Glossary, at Ref. 247:

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J.C. Herr.

Glossary of Acronyms and GlossaryTerms

Critical dimension (CD)

Dimensions of the smallest geometrical features (width of interconnect line, contacts, trenches, etc.) that can be formed during semiconductor device/circuit manufacturing using given technology.

Design rules

Specifications for the minimum dimensions of devices and interconnects comprising an integrated circuit adopted during design stage, deGlossaryTermined by the capabilities of process technology available.

Complementary metal oxide semiconductor (CMOS)

A structure that consists of N-channel and P-channel MOS transistors. Due to very low power consumption and dissipation as well minimization of the current in “off” state CMOS is a very effective device configuration for implementation of digital functions. CMOS is a key device in state-of-the-art silicon microelectronics.

Double patterning (DP)

A class of patterning technologies developed for extending manufacturable lithographic processes for semiconductor-related applications, by enabling enhanced the feature density. It includes the following technology options, such as dual-tone photoresist, dual-tone development, self-aligned spacers, and double-exposure processes. This technology serves as a bridge to the 22 nm technology node.248

Dynamic random access memory (DRAM)

A memory cell in which digital information (data) is stored in volatile state; information stored is lost unless charge is refreshed periodically (in contrast static RAM, or SRAM); loses its data when the power supply is removed; key component of digital circuits; the most mass produced type of an integrated circuit.

Environment, Safety, & Health (ESH)

(i) understand (characterize) processes and materials during the development phase, (ii) use materials that are less hazardous or whose byproducts are less hazardous, (iii) design products and systems (equipment and facilities) that consume less raw material and resources, and (4) make the factory safe for employees249

The ITRS ESH team (ITWG)

identifies challenges when new wafer processing and assembly technologies move through research and development phases and toward manufacturing insertion. The four basic ESH roadmap strategies are to:

International Technology Roadmap for Semiconductors (ITRS)

This endeavor reflects a global consensus on a 15-year projection of the semiconductor industry’s future technology requirements. These future needs drive present-day strategies for worldwide research and development among manufacturers’ research facilities, universities, and national labs.250

International Technology Working Group (ITWG)

The ITRS organization includes sponsoring organizations, the executive committee, known as the International Roadmap Committee (IRC). Regional and international technology working groups (TWGs/ITWGs), and the management office at SEMATECH. The ITRS teams are recognized experts that volunteer their time to work in a technology group in their expertise area.251

Line edge roughness (LER)

Line-edge roughness is a GlossaryTerm commonly used to describe roughness of the edge of the exposed and developed photoresist; a departure of the edge of the photoresist pattern from the perfectly straight line; a critically important issue in sub-90 nm photolithography; very difficult to work around as it is inherent to the nature of the photoresist material morphology.

L o

This material metric corresponds to the length of the symmetric lamellar period of a phase-segregated block copolymer.

L s

This patterning metric corresponds to the length of the lithographically defined period for alternating lines and spaces.

Microprocessor unit fabricated on one chip (MPU)

This system contains the basic elements of a computer, including logic and control, which are needed to process data.

Node

In previous editions of the ITRS, the GlossaryTerm “technology node” (or “hpXX node”) was used in an attempt to provide a single, simple indicator of overall industry progress in integrated circuit (IC) feature scaling. It was specifically defined as the smallest half-pitch of contacted metal lines on any product. Historically, DRAM has been the product which, at a given time, exhibited the tightest contacted metal pitch and, thus, it “sets the pace” for the ITRS technology nodes. However, we are now in an era in which there are multiple significant drivers of scaling and believe that it would be misleading to continue with a single highlighted driver, including DRAM. Today, the DRAM M1 half-pitch is just one among several historical indicators of IC scaling.252

PS–b-PtbocST

Polystyrene–b-p-tert-butyloxycarbonyloxystyrene diblock copolymer.

PEO–PPO

Poly(ethylene oxide)–poly(propylene oxide) diblock copolymer.

PEO–b-PPO–b-PEO

Poly(ethylene oxide)–b-poly(propylene oxide)–b-poly(ethylene oxide) triblock copolymer.

Pitch

The linear dimension that corresponds to the center-to-center distance between features of an integrated circuit, such as interconnect lines.

Resolution

This GlossaryTerm reflects the precision of the lithographic pattern transfer process. The smaller the geometries that can be defined, the higher the process resolution. It is deGlossaryTermined by several factors related to the exposure tool, resist, and masks used.

Sensitivity

This GlossaryTerm corresponds to the exposure dose required to expose a photoresist. The sensitivity of a photoresist is measured by its quantum efficiency, or the number of chemical reactions per photon absorbed or electron collisions within the resist. For photon and electron based lithographic processes the units of sensitivity are mJ/cm2 or µC/cm2, respectively. A photoresist’s sensitivity to a particular energy source drives the resist’s imaging functionality. There is a relationship between the amount of energy deposited in a polymer film and the extent of chemical reaction that directly affects the sensitivity and resolution of an electron resist. Factors that affect this relationship are beam voltage, polymer density, substrate density, atomic number, and electron dose.253 Other factors that affect the photoresist sensitivity include polymer composition and dispersity, the photoactive compound or photoacid generator, and the specific chemistry that enables the differential solubility required for pattern formation.

Triangle of death

The “triangle of death” reflects the interdependence of a resist’s line edge roughness, sensitivity, and resolution, which are considered related in the sense that one can define any two GlossaryTerms with the third GlossaryTerm being fixed by the values selected for the initial two GlossaryTerms, such that LER2 × dose ˜ constant related to resolution.254

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herr, D.J. Directed block copolymer self-assembly for nanoelectronics fabrication. Journal of Materials Research 26, 122–139 (2011). https://doi.org/10.1557/jmr.2010.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.74

Navigation