Skip to main content

Advertisement

Log in

Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In a carbon-free economy, nuclear power will surely play a fundamental role as a clean and cost-competitive energy source. However, new-generation nuclear concepts involve temperature and irradiation conditions for which no experimental facility exists, making it exceedingly difficult to predict structural materials performance and lifetime. Although the gap with real materials is still large, advances in computing power over the last decade have enabled the development of accurate and efficient numerical algorithms for materials simulations capable of probing the challenging conditions expected in future nuclear environments. One of the most important issues in metallic structural materials is the degradation of their mechanical properties under irradiation. Mechanical properties are intimately related to the glide resistance of dislocations, which can be increased severalfold due to irradiation-produced defects. Here, we present a combined multiscale study of dislocation-irradiation obstacle interactions in a model system (Cu) using atomistic and dislocation dynamics simulations. Scaling laws generalizing material behavior are extracted from our results, which are then compared with experimental measurements of irradiation hardening in Cu, showing good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Arakawa, K. Ono, M. Isshiki, K. Mimura, M. Uchikoshi, and H. Mori: Observation of the one-dimensional diffusion of nanometer-sized dislocation loops. Science 318, 956 (2007).

    Article  CAS  Google Scholar 

  2. Y. Matsukawa and S.J. Zinkle: One-dimensional fast migration of vacancy clusters in metals. Science 318, 959 (2007).

    Article  CAS  Google Scholar 

  3. G.R. Odette, M.J. Alinger, and B.D. Wirth: Recent developments in irradiation-resistant steels. Annu. Rev. Mater. Res. 38, 471 (2008).

    Article  CAS  Google Scholar 

  4. Petascale Computing: Algorithms and Applications, 1st ed., edited by D.A. Bader (Chapman & Hall/CRC, Boca Raton, FL, 2007).

    Google Scholar 

  5. M. Victoria, N. Baluc, C. Bailet, Y. Dai, M.I. Luppo, R. Schaeublin, and B.N. Singh: The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 276, 114 (2000).

    Article  CAS  Google Scholar 

  6. Y. Dai and M. Victoria: Defect cluster structure and tensile properties of copper single crystals irradiated with 600 MeV protons. (Mater. Res. Soc. Symp. Proc. 439, Warrendale, PA, 1997), p. 319.

  7. Y. Satoh, T. Yoshiie, H. Mori, and M. Kiritani: Formation of stacking-fault tetrahedra in aluminum irradiated with high-energy particles at low-temperatures. Phys. Rev. B 69, 094108/1–11 (2004).

    Google Scholar 

  8. J. Silcox and P.B. Hirsch: Direct observations of defects in quenched gold. Philos. Mag. 4, 72 (1959).

    Article  CAS  Google Scholar 

  9. J.S. Robach, I.M. Robertson, B.D. Wirth, and A. Arsenlis: In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ionirradiated copper. Philos. Mag. 83, 955 (2003).

    Article  CAS  Google Scholar 

  10. J.S. Robach, I.M. Robertson, H-J Lee, and B.D. Wirth: Dynamic observations and atomistic simulations of dislocation-defect interactions in rapidly quenched copper and gold. Acta Mater. 54, 1679 (2006).

    Article  CAS  Google Scholar 

  11. Y. Matsukawa and S.J. Zinkle: Dynamic observation of the collapse process of a stacking fault tetrahedron by moving dislocations. J. Nucl. Mater. 329–333. 919 (2004).

    Article  Google Scholar 

  12. Y. Matsukawa, Y.N. Osetsky, R.E. Stoller, and S.J. Zinkle: Destruction processes of large stacking fault tetrahedra induced by direct interaction with gliding dislocations. J. Nucl. Mater. 351, 285 (2006).

    Article  CAS  Google Scholar 

  13. Y.N. Osetsky, R.E. Stoller, and Y. Matsukawa: Dislocation-stacking fault tetrahedron interaction: What can we learn from atomic-scale modeling? J. Nucl. Mater. 329, 1228 (2004).

    Article  Google Scholar 

  14. Y.N. Osetsky, R.E. Stoller, D. Rodney, and D.J. Bacon: Atomic-scale details of dislocation-stacking fault tetrahedra interaction. Mater. Sci. Eng.A, 400, 370 (2005).

    Article  Google Scholar 

  15. Y.N. Osetsky, D. Rodney, and D.J. Bacon: Atomic-scale study of dislocation-stacking fault tetrahedron interactions. Part I: Mechanisms. Philos. Mag. 86, 2295 (2006).

    CAS  Google Scholar 

  16. Y.N. Osetsky, Y. Matsukawa, R.E. Stoller, and S.J. Zinkle: On the features of dislocation-obstacle interaction in thin films: Large-scale atomistic simulation. Philos. Mag. Lett. 86, 511 (2006).

    Article  CAS  Google Scholar 

  17. H.J. Lee, J.H. Shim, and B.D. Wirth: Molecular dynamics simulation of screw dislocation interaction with stacking fault tetrahedron in face-centered cubic Cu. J. Mater. Res. 22, 2758 (2007).

    Article  CAS  Google Scholar 

  18. de la T.D. Rubia and M.W. Guinan: Progress in the development of a molecular dynamics code for high-energy cascade studies. J. Nucl. Mater. 174, 151 (1990).

    Article  Google Scholar 

  19. S.J. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Compia. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  20. T. Suzuki, S. Takeuchi, and H. Yoshinaga: Dislocation Dynamics and Plasticity (Springer-Verlag, Berlin, 1991).

    Book  Google Scholar 

  21. A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov: Enabling strain hardening simulations with dislocation dynamics. Modell. Simul. Mater. Sci. Eng. 15, 553 (2007).

    Article  Google Scholar 

  22. T.A. Khraishi, H.M. Zbib, De la T.D. Rubia, and M. Victoria: Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations. Metall. Mater. Trans. B 33. 285 (2002).

    Article  Google Scholar 

  23. N.M. Ghoniem, S.H. Tong, B.N. Singh, and L.Z. Sun: On dislocation interaction with radiation-induced defect clusters and plastic flow localization in fcc metals. Philos. Mag. A 81, 2743 (2001).

    Article  CAS  Google Scholar 

  24. N.M. Ghoniem, S.H. Tong, J. Huang, B.N. Singh, and M. Wen: Mechanisms of dislocation-defect interactions in irradiated metals investigated by computer simulations. J. Nucl. Mater. 307, 843 (2002).

    Article  Google Scholar 

  25. E. Martinez, J. Marian, A. Arsenlis, M. Victoria, and J.M. Perlado: Atomistically informed dislocation dynamics in fcc crystals. J. Mech. Phys. Solids 56, 869 (2008).

    Article  CAS  Google Scholar 

  26. E. Martinez, J. Marian, A. Arsenlis, M. Victoria, and J.M. Perlado: Dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: Interactions with screw dislocations. Philos. Mag. 88. 809 (2008).

    Article  CAS  Google Scholar 

  27. H. Kimura and R. Maddin: Lattice Defects in Quenched Metals, edited by R. Cotterill (Academic Press, New York, 1965), p. 319.

  28. J.E. Bailey and P.B. Hirsch: Recrystallization process in some polycrystalline metals. Proc. R. Soc. London, Ser. A 267, 11 (1962).

    CAS  Google Scholar 

  29. P. Franciosi, M. Berveiller, and A. Zaoui: Latent hardening in copper and aluminum single-crystals. Acta Metall. 28. 273 (1980).

    Article  CAS  Google Scholar 

  30. R. Schäublin, Z. Yao, P. Spätig, and M. Victoria: Dislocation defect interaction in irradiated Cu. Mater. Sci. Eng.A, 400–401, 251 (2005).

    Article  Google Scholar 

  31. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 4106 (2001).

    Article  Google Scholar 

  32. D. Rodney: Molecular dynamics simulation of screw dislocation interacting with interstitial frank loops in a model FCC crystal. Acta Mater. 52, 607 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Marian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marian, J., Martínez, E., Lee, HJ. et al. Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper. Journal of Materials Research 24, 3628–3635 (2009). https://doi.org/10.1557/jmr.2009.0424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0424

Navigation