Skip to main content

Discrete Dislocation Dynamics Simulations of Irradiation Hardening in Nuclear Materials

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Neutron irradiation can severely impact the mechanical behavior of nuclear structural materials. Irradiation introduces a high density of nanometric defects that block dislocation motion and result in hardening and a loss of ductility often associated with the onset of localized plastic flow in a highly heterogeneous manner. In our hierarchy of numerical methods used to understand and quantify mechanical property degradation under irradiation, discrete dislocation dynamics (DD) provides a window into the time and length scales where critical interactions between dislocations and defects occur. In the present chapter, we discuss the current state of the art of DD simulations applied to irradiation scenarios, introducing the theoretical models devised to deal with dislocation-defect interactions, crystal structure particularities, and the most salient aspects of several highlighted applications. We also discuss current limitations and what new understanding has been gained vis-a-vis serviceable nuclear materials using these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ackland G (2010) Controlling radiation damage. Science 327(5973):1587–1588

    Article  Google Scholar 

  • Amodeo RJ, Ghoniem NM (1990) Dislocation dynamics. I. A proposed methodology for deformation micromechanics. Phys Rev B 41:6958–6967. https://doi.org/10.1103/PhysRevB.41.6958

    Article  ADS  Google Scholar 

  • Arsenlis A, Wirth B, Rhee M (2004) Dislocation density-based constitutive model for the mechanical behaviour of irradiated cu. Philos Mag 84(34):3617–3635

    Article  ADS  Google Scholar 

  • Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce TG, Bulatov VV (2007) Enabling strain hardening simulations with dislocation dynamics. Model Simul Mater Sci Eng 15(6):553

    Article  ADS  Google Scholar 

  • Arsenlis A, Rhee M, Hommes G, Cook R, Marian J (2012) A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Mater 60(9):3748–3757

    Article  Google Scholar 

  • Aubry S, Arsenlis A (2013) Use of spherical harmonics for dislocation dynamics in anisotropic elastic media. Model Simul Mater Sci Eng 21(6):065013

    Article  ADS  Google Scholar 

  • Aubry S, Rhee M, Hommes G, Bulatov V, Arsenlis A (2016) Dislocation dynamics in hexagonal close-packed crystals. J Mech Phys Solids 94:105–126

    Article  ADS  MathSciNet  Google Scholar 

  • Bacon DJ, Osetsky YN (2005) Modelling dislocation–obstacle interactions in metals exposed to an irradiation environment. Mater Sci Eng A 400:353–361

    Article  Google Scholar 

  • Bacon D, Kocks U, Scattergood R (1973) The effect of dislocation self-interaction on the Orowan stress. Philos Mag 28(6):1241–1263

    Article  ADS  Google Scholar 

  • Bacon D, Barnett D, Scattergood RO (1980) Anisotropic continuum theory of lattice defects. Prog Mater Sci 23:51–262

    Article  ADS  Google Scholar 

  • Bacon DJ, Osetsky YN, Rong Z (2006) Computer simulation of reactions between an edge dislocation and glissile self-interstitial clusters in iron. Philos Mag 86(25–26):3921–3936

    Article  ADS  Google Scholar 

  • Bacon D, Osetsky Y, Rodney D (2009) Dislocation–obstacle interactions at the atomic level. Dislocat Solids 15:1–90

    Article  MATH  Google Scholar 

  • Bakó B, Clouet E, Dupuy LM, Blétry M (2011) Dislocation dynamics simulations with climb: kinetics of dislocation loop coarsening controlled by bulk diffusion. Philos Mag 91(23):3173–3191

    Article  ADS  Google Scholar 

  • Balluffi RW (2016) Introduction to elasticity theory for crystal defects. World Scientific Publishing Company, Singapore

    Book  MATH  Google Scholar 

  • Barton NR, Arsenlis A, Marian J (2013) A polycrystal plasticity model of strain localization in irradiated iron. J Mech Phys Solids 61(2):341–351

    Article  ADS  Google Scholar 

  • Blewitt T, Coltman R, Jamison R, Redman J (1960) Radiation hardening of copper single crystals. J Nucl Mater 2(4):277–298

    Article  ADS  Google Scholar 

  • Bulatov VV, Rhee M, Cai W (2000) Periodic boundary conditions for dislocation dynamics simulations in three dimensions. MRS Proceedings, 653, Z1.3. https://doi.org/10.1557/PROC-653-Z1.3

    Article  Google Scholar 

  • Byun T, Farrell K (2004) Plastic instability in polycrystalline metals after low temperature irradiation. Acta Mater 52(6):1597–1608

    Article  Google Scholar 

  • Byun T, Hashimoto N, Farrell K (2004) Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels. Acta Mater 52(13):3889–3899

    Article  Google Scholar 

  • Byun T, Hashimoto N, Farrell K (2006a) Deformation mode map of irradiated 316 stainless steel in true stress–dose space. J Nucl Mater 351(1–3):303–315

    Article  ADS  Google Scholar 

  • Byun T, Hashimoto N, Farrell K, Lee E (2006b) Characteristics of microscopic strain localization in irradiated 316 stainless steels and pure vanadium. J Nucl Mater 349(3):251–264

    Article  ADS  Google Scholar 

  • Cai W, Arsenlis A, Weinberger CR, Bulatov VV (2006) A non-singular continuum theory of dislocations. J Mech Phys Solids 54(3):561–587

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Calder A, Bacon D (1993) A molecular dynamics study of displacement cascades in α-iron. J Nucl Mater 207:25–45

    Article  ADS  Google Scholar 

  • Cottrell AH, Bilby B (1949) Dislocation theory of yielding and strain ageing of iron. Proc Phys Soc Sect A 62(1):49

    Article  ADS  Google Scholar 

  • Crosby T, Po G, Ghoniem NM (2014) Modeling plastic deformation of post-irradiated copper micro-pillars. J Nucl Mater 455(1–3):126–129

    Article  ADS  Google Scholar 

  • Cui Y, Po G, Ghoniem N (2017) Does irradiation enhance or inhibit strain bursts at the submicron scale? Acta Mater 132:285–297

    Article  Google Scholar 

  • Cui Y, Po G, Ghoniem NM (2018) A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials. Int J Plast 104:54–67

    Article  Google Scholar 

  • de La Rubia TD, Averback R, Hsieh H, Benedek R (1989) Molecular dynamics simulation of displacement cascades in Cu and Ni: thermal spike behavior. J Mater Res 4(3):579–586

    Article  ADS  Google Scholar 

  • de la Rubia TD, Zbib HM, Khraishi TA, Wirth BD, Victoria M, Caturla MJ (2000) Multiscale modelling of plastic flow localization in irradiated materials. Nature 406(6798):871 EP. https://doi.org/10.1038/35022544

    Article  ADS  Google Scholar 

  • Deng J, El-Azab A, Larson BC (2008) On the elastic boundary value problem of dislocations in bounded crystals. Philos Mag 88:3527–3548

    Article  ADS  Google Scholar 

  • Devincre B, Madec R, Monnet G, Queyreau S, Gatti R, Kubin L (2011) Modeling crystal plasticity with dislocation dynamics simulations: the micromegas code. In: Thomas O (ed) Mechanics of Nano-objects. Presses des Mines, Paris, pp 81–100

    Google Scholar 

  • Drouet J, Dupuy L, Onimus F, Mompiou F, Perusin S, Ambard A (2014) Dislocation dynamics simulations of interactions between gliding dislocations and radiation induced prismatic loops in zirconium. J Nucl Mater 449(1–3):252–262

    Article  ADS  Google Scholar 

  • Dudarev SL, Bullough R, Derlet PM (2008) Effect of the α − γ phase transition on the stability of dislocation loops in bcc iron. Phys Rev Lett 100:135503

    Article  ADS  Google Scholar 

  • Eshelby J (1979) Boundary problems. In: Nabarro FRN (ed) Dislocations in solids V1. North-Holland, Amsterdam, pp 167–221

    Google Scholar 

  • Ferroni F, Tarleton E, Fitzgerald S (2014) Dislocation dynamics modelling of radiation damage in thin films. Model Simul Mater Sci Eng 22(4):045009

    Article  ADS  Google Scholar 

  • Fitzgerald S, Aubry S (2010) Self-force on dislocation segments in anisotropic crystals. J Phys Condens Matter 22(29):295403

    Article  Google Scholar 

  • Fitzgerald, SP (2010) Frank–read sources and the yield of anisotropic cubic crystals. Philos Mag Lett 90:209–218

    Article  ADS  Google Scholar 

  • Fitzgerald SP, Aubry S, Dudarev SL, Cai W (2012) Dislocation dynamics simulation of Frank-Read sources in anisotropic α-Fe. Model Simul Mater Sci Eng 20:045022

    Article  ADS  Google Scholar 

  • Fivel M, Canova G (1999) Developing rigorous boundary conditions to simulations of discrete dislocation dynamics. Model Simul Mater Sci Eng 7(5):753

    Article  ADS  Google Scholar 

  • Geantil P, Devincre B, Kassner ME (2013) Dislocation-induced internal stresses. In: Altenbach H, Kruch S (eds) Advanced materials modelling for structures. Springer, Berlin/Heidelberg, pp 177–187

    Chapter  Google Scholar 

  • Ghoniem NM, Amodeo R (1988) Computer simulation of dislocation pattern formation. Solid State Phenomena, 3&4:377–388. https://www.scientific.net/SSP.3-4.377.pdf

    Google Scholar 

  • Ghoniem NM, Tong SH, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61(2):913

    Article  ADS  Google Scholar 

  • Ghoniem N, Tong SH, Singh B, Sun L (2001) On dislocation interaction with radiation-induced defect clusters and plastic flow localization in FCC metals. Philos Mag A 81(11):2743–2764

    Article  ADS  Google Scholar 

  • Golubov S, Singh B, Trinkaus H (2000) Defect accumulation in FCC and BCC metals and alloys under cascade damage conditions–towards a generalisation of the production bias model. J Nucl Mater 276(1–3):78–89

    Article  ADS  Google Scholar 

  • Gulluoglu A, Srolovitz DJ, LeSar R, Lomdahl P (1989) Dislocation distributions in two dimensions. Scr Metall 23:1347–1352

    Article  Google Scholar 

  • Gurrutxaga-Lerma B, Balint DS, Dini D, Eakins DE, Sutton AP (2013) A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading. Proc R Soc A 469(2156):20130141

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Gururaj K, Robertson C (2011) Plastic deformation in ods ferritic alloys: a 3D dislocation dynamics investigation. Energy Procedia 7:279–285

    Article  Google Scholar 

  • Gururaj K, Robertson C, Fivel M (2015a) Channel formation and multiplication in irradiated FCC metals: a 3D dislocation dynamics investigation. Philos Mag 95(12):1368–1389

    Article  ADS  Google Scholar 

  • Gururaj K, Robertson C, Fivel M (2015b) Post-irradiation plastic deformation in BCC Fe grains investigated by means of 3D dislocation dynamics simulations. J Nucl Mater 459:194–204

    Article  ADS  Google Scholar 

  • Haghighat SH, Fivel M, Fikar J, Schaeublin R (2009) Dislocation–void interaction in Fe: a comparison between molecular dynamics and dislocation dynamics. J Nucl Mater 386:102–105

    Article  ADS  Google Scholar 

  • Han X, Ghoniem N, Wang Z (2003) Parametric dislocation dynamics of anisotropic crystals. Philos Mag 83(31–34):3705–3721

    Article  ADS  Google Scholar 

  • Hashimoto N, Byun T, Farrell K, Zinkle S (2004) Deformation microstructure of neutron-irradiated pure polycrystalline metals. J Nucl Mater 329:947–952

    Article  ADS  Google Scholar 

  • Hashimoto N, Byun T, Farrell K (2006) Microstructural analysis of deformation in neutron-irradiated FCC materials. J Nucl Mater 351(1–3):295–302

    Article  ADS  Google Scholar 

  • Holmes DK (1964) The interaction of radiation with solids, vol 10. North-Holland, Amsterdam

    Google Scholar 

  • Hosemann P (2018) Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap. Scr Mater 143:161–168

    Article  Google Scholar 

  • Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Phys Rev Lett 109:265504. https://doi.org/10.1103/PhysRevLett.109.265504

    Article  ADS  Google Scholar 

  • Khraishi TA, Zbib HM, de La Rubia TD, Victoria M (2002) Localized deformation and hardening in irradiated metals: three-dimensional discrete dislocation dynamics simulations. Metall Mater Trans B 33(2):285–296

    Article  Google Scholar 

  • Kimura H, Kuhlmann-Wilsdorf D, Maddin R (1963) The growth mechanism of stacking-fault tetrahedra in quenched gold. Appl Phys Lett 3(1):4–5

    Article  ADS  Google Scholar 

  • Kubin L (2013) Dislocations, mesoscale simulations and plastic flow, vol 5. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kubin L, Canova G (1992) The modelling of dislocation patterns. Scr Metall Mater 27(8):957–962

    Article  Google Scholar 

  • Kubin LP, Canova G, Condat M, Devincre B, Pontikis V, Bréchet Y (1992) Dislocation microstructures and plastic flow: a 3D simulation. Solid State Phenom Trans Tech Publ 23:455–472

    Article  Google Scholar 

  • Lambrecht M, Meslin E, Malerba L, Hernández-Mayoral M, Bergner F, Pareige P, Radiguet B, Almazouzi A (2010) On the correlation between irradiation-induced microstructural features and the hardening of reactor pressure vessel steels. J Nucl Mater 406(1):84–89

    Article  ADS  Google Scholar 

  • Lehtinen A, Laurson L, Granberg F, Nordlund K, Alava MJ (2018) Effects of precipitates and dislocation loops on the yield stress of irradiated iron. Sci Rep 8(1):6914

    Article  ADS  Google Scholar 

  • Lépinoux J, Kubin L (1987) The dynamic organization of dislocation structures: a simulation. Scr Metall 21(6):833–838. https://doi.org/10.1016/0036-9748(87)90332-2. http://www.sciencedirect.com/science/article/pii/0036974887903322

    Article  Google Scholar 

  • Liu XY, Biner S (2008) Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe. Scr Mater 59(1):51–54

    Article  Google Scholar 

  • Madec R, Devincre B, Kubin L (2004) On the use of periodic boundary conditions in dislocation dynamics simulations. In: Kitagawa H, Shibutani Y (eds), Proceeding of the IUTAM Symposium held in Osaka, Japan 6–11, pp 35–44. https://www.springer.com/us/book/9781402020377

    Google Scholar 

  • Marian J, Wirth BD, Schäublin R, Odette G, Perlado JM (2003) Md modeling of defects in Fe and their interactions. J Nucl Mater 323(2–3):181–191

    Article  ADS  Google Scholar 

  • Marian J, Martinez E, Lee HJ, Wirth BD (2009) Micro/meso-scale computational study of dislocation-stacking-fault tetrahedron interactions in copper. J Mater Res 24(12):3628–3635

    Article  ADS  Google Scholar 

  • Martinez E, Marian J, Arsenlis A, Victoria M, Perlado J (2008a) Atomistically informed dislocation dynamics in FCC crystals. J Mech Phys Solids 56(3):869–895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Martinez E, Marian J, Arsenlis A, Victoria M, Perlado J (2008b) A dislocation dynamics study of the strength of stacking fault tetrahedra. Part I: interactions with screw dislocations. Philos Mag 88(6):809–840

    Article  ADS  Google Scholar 

  • Martinez E, Marian J, Perlado J (2008c) A dislocation dynamics study of the strength of stacking fault tetrahedra. Part II: interactions with mixed and edge dislocations. Philos Mag 88(6):841–863

    Article  ADS  Google Scholar 

  • Matzke H (1992) Radiation damage in nuclear materials. Nucl Instrum Methods Phys Res Sect B Beam Int Mater Atoms 65(1–4):30–39

    Article  ADS  Google Scholar 

  • McMurtrey M, Was G, Cui B, Robertson I, Smith L, Farkas D (2014) Strain localization at dislocation channel–grain boundary intersections in irradiated stainless steel. Int J Plast 56:219–231

    Article  Google Scholar 

  • Mohles V (2001) Orowan process controlled dislocation glide in materials containing incoherent particles. Mater Sci Eng A 309:265–269

    Article  Google Scholar 

  • Mohles V (2004) The critical resolved shear stress of single crystals with long-range ordered precipitates calculated by dislocation dynamics simulations. Mater Sci Eng A 365(1–2):144–150

    Article  Google Scholar 

  • Monnet G (2006) Investigation of precipitation hardening by dislocation dynamics simulations. Philos Mag 86(36):5927–5941

    Article  ADS  Google Scholar 

  • Monnet G, Devincre B, Kubin L (2004) Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium. Acta Mater 52(14):4317–4328

    Article  Google Scholar 

  • Monnet G, Osetsky YN, Bacon DJ (2010) Mesoscale thermodynamic analysis of atomic-scale dislocation–obstacle interactions simulated by molecular dynamics. Philos Mag 90 (7–8):1001–1018

    Article  ADS  Google Scholar 

  • Monnet G, Naamane S, Devincre B (2011) Orowan strengthening at low temperatures in bcc materials studied by dislocation dynamics simulations. Acta Mater 59(2):451–461

    Article  Google Scholar 

  • Mura T (1987) Micromechanics of Defects in Solids, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  • Nogaret T, Rodney D, Fivel M, Robertson C (2008) Clear band formation simulated by dislocation dynamics: role of helical turns and pile-ups. J Nucl Mater 380(1–3):22–29

    Article  ADS  Google Scholar 

  • Odette G, Lucas G (2001) Embrittlement of nuclear reactor pressure vessels. JOM 53(7):18–22

    Article  Google Scholar 

  • Osetsky YN, Bacon DJ (2003) Void and precipitate strengthening in α-iron: what can we learn from atomic-level modelling? J Nucl Mater 323(2–3):268–280

    Article  ADS  Google Scholar 

  • Osetsky YN, Bacon DJ (2010) Atomic-scale mechanisms of void hardening in BCC and FCC metals. Philos Mag 90(7–8):945–961

    Article  ADS  Google Scholar 

  • Osetsky YN, Stoller RE, Rodney D, Bacon DJ (2005) Atomic-scale details of dislocation–stacking fault tetrahedra interaction. Mater Sci Eng A 400:370–373

    Article  Google Scholar 

  • Osetsky YN, Rodney D, Bacon DJ (2006) Atomic-scale study of dislocation–stacking fault tetrahedron interactions. Part I: mechanisms. Philos Mag 86(16):2295–2313

    Article  ADS  Google Scholar 

  • Phythian W, Stoller R, Foreman A, Calder A, Bacon D (1995) A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution. J Nucl Mater 223(3):245–261

    Article  ADS  Google Scholar 

  • Po G, Ghoniem N (2014) A variational formulation of constrained dislocation dynamics coupled with heat and vacancy diffusion. J Mech Phys Solids 66:103–116

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Po G, Lazar M, Seif D, Ghoniem N (2014a) Singularity-free dislocation dynamics with strain gradient elasticity. J Mech Phys Solids 68:161–178

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Po G, Mohamed MS, Crosby T, Erel C, El-Azab A, Ghoniem N (2014b) Recent progress in discrete dislocation dynamics and its applications to micro plasticity. JOM 66(10):2108–2120

    Article  Google Scholar 

  • Po G, Lazar M, Admal NC, Ghoniem N (2017) A non-singular theory of dislocations in anisotropic crystals. Int J Plast 103:1–22

    Article  Google Scholar 

  • Queyreau S, Monnet G, Devincre B (2010) Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater 58(17):5586–5595

    Article  Google Scholar 

  • Queyreau S, Monnet G, Wirth BD, Marian J (2011) Modeling the dislocation-void interaction in a dislocation dynamics simulation. MRS Proceedings, 1297, Mrsf10-1297-p10-61. https://doi.org/10.1557/opl.2011.462

  • Rhee M, Stolken JS, Bulatov VV, de la Rubia TD, Zbib HM, Hirth JP (2001) Dislocation stress fields for dynamic codes using anisotropic elasticity: methodology and analysis. Mater Sci Eng A 309:288–293

    Article  Google Scholar 

  • Ringdalen I, Wenner S, Friis J, Marian J (2017) Dislocation dynamics study of precipitate hardening in Al–Mg–Si alloys with input from experimental characterization. MRS Commun 7(3):626–633

    Article  Google Scholar 

  • Robertson IM, Beaudoin A, Al-Fadhalah K, Chun-Ming L, Robach J, Wirth B, Arsenlis A, Ahn D, Sofronis P (2005) Dislocation–obstacle interactions: dynamic experiments to continuum modeling. Mater Sci Eng A 400:245–250

    Article  Google Scholar 

  • Seeger A (ed) (1958) Proceedings of the second United Nations International Conference on the Peaceful Uses of Atomic Energy, held in Geneva, Vol 6. http://www-naweb.iaea.org/napc/physics/2ndgenconf/data/Proceedings%201958/NG900088.pdf

  • Shenoy V, Kukta R, Phillips R (2000) Mesoscopic analysis of structure and strength of dislocation junctions in FCC metals. Phys Rev Lett 84(7):1491

    Article  ADS  Google Scholar 

  • Shi X, Dupuy L, Devincre B, Terentyev D, Vincent L (2015) Interaction of <1 0 0> dislocation loops with dislocations studied by dislocation dynamics in α-iron. J Nucl Mater 460:37–43

    Article  ADS  Google Scholar 

  • Shin C, Fivel M, Verdier M, Oh K (2003) Dislocation–impenetrable precipitate interaction: a three-dimensional discrete dislocation dynamics analysis. Philos Mag 83(31–34):3691–3704

    Article  ADS  Google Scholar 

  • Sickafus KE, Matzke H, Hartmann T, Yasuda K, Valdez JA, Chodak P III, Nastasi M, Verrall RA (1999) Radiation damage effects in zirconia. J Nucl Mater 274(1–2):66–77

    Article  ADS  Google Scholar 

  • Singh B, Foreman A, Trinkaus H (1997) Radiation hardening revisited: role of intracascade clustering. J Nucl Mater 249(2–3):103–115

    Article  ADS  Google Scholar 

  • Sobie C, Bertin N, Capolungo L (2015) Analysis of obstacle hardening models using dislocation dynamics: application to irradiation-induced defects. Metall Mater Trans A 46(8):3761–3772

    Article  Google Scholar 

  • Sun L, Ghoniem N, Tong SH, Singh B (2000) 3D dislocation dynamics study of plastic instability in irradiated copper. J Nucl Mater 283:741–745

    Article  ADS  Google Scholar 

  • Takahashi A, Ghoniem NM (2008) A computational method for dislocation–precipitate interaction. J Mech Phys Solids 56(4):1534–1553

    Article  ADS  MATH  Google Scholar 

  • Tang M, Cai W, Xu G, Bulatov VV (2006) A hybrid method for computing forces on curved dislocations intersecting free surfaces in three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 14(7):1139

    Article  ADS  Google Scholar 

  • Terentyev D, Grammatikopoulos P, Bacon D, Osetsky YN (2008) Simulation of the interaction between an edge dislocation and a <1 0 0> interstitial dislocation loop in α-iron. Acta Mater 56(18):5034–5046

    Article  Google Scholar 

  • Terentyev D, Bacon DJ, Osetsky YN (2010) Reactions between a 1/2<111> screw dislocation and <100> interstitial dislocation loops in alpha-iron modelled at atomic scale. Philos Mag 90(7–8):1019–1033

    Article  ADS  Google Scholar 

  • Terentyev D, Monnet G, Grigorev P (2013) Transfer of molecular dynamics data to dislocation dynamics to assess dislocation–dislocation loop interaction in iron. Scr Mater 69(8):578–581

    Article  Google Scholar 

  • Van der Giessen E, Needleman A (1995) Discrete dislocation plasticity – a simple planar model. Model Simul Mater Sci 3(5):689–735

    Article  ADS  Google Scholar 

  • Victoria M, Baluc N, Bailat C, Dai Y, Luppo M, Schaublin R, Singh B (2000) The microstructure and associated tensile properties of irradiated FCC and BCC metals. J Nucl Mater 276 (1–3):114–122

    Article  ADS  Google Scholar 

  • Weinberger CR, Aubry S, Lee SW, Nix WD, Cai W (2009) Modelling dislocations in a free-standing thin film. Model Simul Mater Sci Eng 17(7):075007

    Article  ADS  Google Scholar 

  • Weygand D, Friedman L, Van der Giessen E, Needleman A (2002) Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Model Simul Mater Sci Eng 10(4):437

    Article  ADS  Google Scholar 

  • Wirth B, Bulatov V, de la Rubia TD (2002) Dislocation-stacking fault tetrahedron interactions in Cu. J Eng Mater Tech 124(3):329–334

    Article  Google Scholar 

  • Woo C, Goesele U (1983) Dislocation bias in an anisotropic diffusive medium and irradiation growth. J Nucl Mater 119(2–3):219–228

    Article  ADS  Google Scholar 

  • Woo C, Singh B (1990) The concept of production bias and its possible role in defect accumulation under cascade damage conditions. Phys Status Solidi B 159(2):609–616

    Article  ADS  Google Scholar 

  • Yao Z, Schäublin R, Victoria M (2004) Tensile properties of irradiated Cu single crystals and their temperature dependence. J Nucl Mater 329:1127–1132

    Article  ADS  Google Scholar 

  • Yin J, Barnett DM, Fitzgerald S, Cai W (2012) Computing dislocation stress fields in anisotropic elastic media using fast multipole expansions. Model Simul Mater Sci Eng 20(4):045015

    Article  ADS  Google Scholar 

  • Yoffe EH (1961) A dislocation at a free surface. Philos Mag 6(69):1147–1155

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Young F Jr (1962) Etch pit studies of dislocations in copper crystals deformed by bending: I. Annealed crystals; II. Irradiated crystals. J Appl Phys 33(12):3553–3564

    Google Scholar 

  • Zinkle S (2012) 1.03-radiation-induced effects on microstructure. Compr Nucl Mater 1:65–98

    Article  Google Scholar 

  • Zinkle SJ, Singh BN (2006) Microstructure of neutron-irradiated iron before and after tensile deformation. J Nucl Mater 351(1–3):269–284

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Marian .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Marian, J., Fitzgerald, S., Po, G. (2018). Discrete Dislocation Dynamics Simulations of Irradiation Hardening in Nuclear Materials. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_121-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics