Skip to main content
Log in

Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

When irradiated, metals undergo significant internal damage accumulation and degradation of mechanical properties. Damage takes the form of a high number density of nanosize defect clusters (stacking-fault tetrahedrons (SFTs) or interstitial loops). The alteration of mechanical properties is manifested in a hardening behavior and localized plastic deformation in defect-free channels. This work uses discrete dislocation dynamics (DD) to capture these effects. It sets the framework for the elastic interaction between gliding dislocations and defect clusters and details a scheme for loop unfaulting and absorption into dislocations. Here, it is shown that SFTs represents weaker pinning points for dislocation motion than parent dislocation loops. It is also shown that appreciable yield drop can be attributed to high density of defects decorating the dislocations. Strong obstacles cause dislocations in Cu to continually double cross slip causing the formation of defect-free channels. Finally, the correlation between yield stress increase and defect number density is in excellent agreement with the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and B.N. Singh: J. Nucl. Mater., 2000, vol. 276, pp. 114–22.

    Article  CAS  Google Scholar 

  2. Y. Dai: Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1995.

    Google Scholar 

  3. A.J.E. Foreman, W.J. Phythian, and C.A. English: Phil. Mag. A, 1992, vol. 66, pp. 671–95.

    CAS  Google Scholar 

  4. D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, and S.J. Wooding: Nucl. Instrum. Methods Phys. Res. B, 1995, vol. 102, pp. 37–46.

    Article  CAS  Google Scholar 

  5. B.D. Wirth, V. Bulatov, and T.D. de la Rubia: J. Nucl. Mater. B, 2000, vol. 283, pp. 773–77.

    Article  Google Scholar 

  6. H. Trinkaus, B.N. Singh, and A.J.E. Foreman: J. Nucl. Mater., 1997, vol. 251, pp. 172–87.

    Article  CAS  Google Scholar 

  7. M.J. Caturla, N. Soneda, E. Alonso, B.D. Wirth, T.D. de la Rubia, and J.M. Perlado: J. Nucl. Mater., 2000, vol. 276, pp. 13–25.

    Article  CAS  Google Scholar 

  8. Y. Dai, and M. Victoria: Acta Mater., 1997, vol. 45, pp. 3495–3501.

    Article  CAS  Google Scholar 

  9. B.N. Singh and S.J. Zinkle: J. Nucl. Mater., 1993, vol. 206, pp. 212–29.

    Article  CAS  Google Scholar 

  10. T.D. de la Rubia, H.M. Zbib, T.A. Khraishi, B.D. Wirth, M. Victoria, and M.J. Caturla: Nature, 2000, vol. 406, pp. 871–74.

    Article  Google Scholar 

  11. J.P. Hirth and J. Lothe: Theory of Dislocations, Krieger, Malabar, FL, 1982.

    Google Scholar 

  12. T.A. Khraishi, J.P. Hirth, H.M. Zbib, and M.A. Khaleel: Int. J. Eng. Sci., 2000, vol. 38, pp. 251–66.

    Article  Google Scholar 

  13. T.A. Khraishi, H.M. Zbib, J.P. Hirth, and T.D. de la Rubia: Phil. Mag. Lett., 2000, vol. 80, pp. 95–105.

    Article  CAS  Google Scholar 

  14. H.M. Zbib, T.D. de la Rubia, M. Rhee, and J.P. Hirth: J. Nucl. Mater., 2000, vol. 276, pp. 154–65.

    Article  CAS  Google Scholar 

  15. N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, and M. Victoria: Proc. MRS Symp., 1998, vol. 540, pp. 539–48.

    Google Scholar 

  16. J.P. Hirth, M. Rhee, and H.M. Zbib: J. Computer-Aided Mater. Des., 1996, vol. 3, pp. 164–66.

    Article  CAS  Google Scholar 

  17. H.M. Zbib, M. Rhee, and J.P. Hirth: Int. J. Mech. Sci., 1998, vol. 40, pp. 113–27.

    Article  Google Scholar 

  18. M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T.D. de la Rubia: Modeling Simul. Mater. Sci. Eng., 1998, vol. 6, pp. 467–92.

    Article  CAS  Google Scholar 

  19. L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Bréchet: Solid State Phenomena, 1992, vols. 23–24, pp. 455–72.

    Article  Google Scholar 

  20. B. Devincre: in Computer Simulations in Materials Science, H.O. Kirchner et al., eds., Kluwer Academic Publishers, Boston, MA, 1996, pp. 309–23.

    Google Scholar 

  21. N.M. Ghoniem and L.Z. Sun: Phys. Rev. B, 1999, vol. 60, pp. 128–40.

    Article  CAS  Google Scholar 

  22. K.W. Schwarz and F.K. LeGoues: Phys. Rev. Lett., 1997, vol. 79, pp. 1877–80.

    Article  CAS  Google Scholar 

  23. B. Devincre: Solid State Comm., 1995, vol. 93, pp. 875–78.

    Article  CAS  Google Scholar 

  24. R.O. Scattergood and D.J. Bacon: Phil. Mag., 1975, vol. 31, pp. 179–98.

    CAS  Google Scholar 

  25. V.V. Bulatov, M. Rhee, and W. Car: Proc. MRS Symp., 1998, vol. 653, pp. Z1.3.1-Z1.3.6.

    Google Scholar 

  26. H. Yasin, H.M. Zbib, and M.A. Khaleel: Mater. Sci. Eng. A, 2001, vols. 309–310, pp. 294–99.

    Google Scholar 

  27. T.A. Khraishi, H.M. Zbib, and T.D. de la Rubia: Mater. Sci. Eng. A, 2001, vols. 309-310, pp. 283–87.

    Article  Google Scholar 

  28. H.Y. Wang and R. LeSar: Phil. Mag. A, 1995, vol. 71, pp. 149–64.

    CAS  Google Scholar 

  29. J.P. Hirth, H.M. Zbib, and J. Lothe: in Modeling Simulations Mater. Sci. Eng., 1998, vol. 6, pp. 165–69.

    Article  Google Scholar 

  30. N.M. Ghoniem, B.N. Singh, L.Z. Sun, and T.D. de la Rubia: J. Nucl. Mater., 2000, vol. 276, pp. 166–77.

    Article  CAS  Google Scholar 

  31. F. Kroupa: Phil. Mag., 1962, vol. 7, pp. 783–801.

    Google Scholar 

  32. Metals Handbook: Desk Edition, H.E. Boyer and T.L. Gall, eds., ASM, Metals Park, OH, 1985.

    Google Scholar 

  33. Bill Wolfer: Lawrence Livermore National Laboratory, Livermore, CA, personal communication.

  34. D. Hull and D.J. Bacon: Introduction to Dislocations, Pergamon Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  35. K. Hanson and J.W. Morris, Jr.: J. Appl. Phys., 1975, vol. 46, pp. 983–90.

    Article  Google Scholar 

  36. J.G. Sevillano, E. Bouchaud, and L.P. Kubin: Scripta Metall. Mater., 1991, vol. 25, pp. 355–60.

    Article  Google Scholar 

  37. R. Tulluri and D.J. Morrison: J. Mater. Eng. Performance, 1997, vol. 6, pp. 454–60.

    CAS  Google Scholar 

  38. B.N. Singh, A. Horsewell, and P. Toft: J. Nucl. Mater., 1999, vols. 271–272, pp. 97–101.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khraishi, T.A., Zbib, H.M., de la Rubia, T.D. et al. Localized deformation and hardening in irradiated metals: Three-dimensional discrete dislocation dynamics simulations. Metall Mater Trans B 33, 285–296 (2002). https://doi.org/10.1007/s11663-002-0012-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-002-0012-7

Keywords

Navigation