Skip to main content
Log in

Improvement of physico-chemical properties by addition of H2O2: An extensive case study on the RE-doped ceria system (RE = Gd, Sm

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Effect of H2O2 on synthesis and powder properties such as surface area and agglomerate size of nanocrystalline Ce0.8M0.2O1.90 (M: Sm, Gd) was explored by treating cerium nitrate and rare-earth nitrate with NaOH in the presence/absence of H2O2. The resultant products were characterized by x-ray diffraction, Raman spectroscopy, thermo-gravimetry–differential thermal analysis, dynamic light scattering, surface area analysis, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The presence of H2O2 was found to have a profound effect on powder properties such as surface area and particle size of these doped ceria samples and results in smaller crystallite size, softer agglomerates, and larger surface area. A mechanism is proposed to explain the observed better powder properties of the samples. It was also shown that the samples prepared in the presence of H2O2 can lower the conversion temperature of CO to CO2, proving these to be better catalysts. Interestingly, temperature-programmed reduction studies on Sm3+-doped samples showed that the doping in conjunction with the use of H2O2 leads to enhanced reduction properties of the samples over multiple cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Park, J.M. Vohs and R.J. Gorte: Direct oxidation of hydro-carbons in a solid-oxide fuel cell. Nature 265, 404 (2000).

    Google Scholar 

  2. E.P. Murray, T. Tsai and A. Barnett: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999).

    Article  CAS  Google Scholar 

  3. Y. Maki, M. Matsuda and T. Kudo: U.S. Patent No. 3 [607] 424, (1971).

    Google Scholar 

  4. V.V. Kharton, F.M. Figueiredo, L. Navarro, E.N. Naumovich, A.V. Kovalevsky, A.A. Yaremchenko, A.P. Viskup, A. Carneiro, F.M.B. Marques and J.R. Frade: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).

    Article  CAS  Google Scholar 

  5. A.I.Y. Tok, L.H. Luo, F.Y.C. Boey and S.H. Ng: Consolidation and properties of Gd0.1Ce0.9O1.95 nanoparticles for solid oxide fuel cell electrolytes. J. Mater. Res. 21, 19 (2006).

    Article  Google Scholar 

  6. N. Izu, W. Shin and N. Murayama: Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sens. Actuators, B 93, 449 (2003).

    Article  CAS  Google Scholar 

  7. N.B. Kirk and J.V. Wood: Glass polishing. Br. Ceram. Trans. 93, 25 (1994).

    CAS  Google Scholar 

  8. X. Yin, L. Hong and Z-L. Liu: Development of oxygen transport membrane La0.2Sr0.8CoO3d/Ce0.8Gd0.2O2d on the tubular CeO2support. Appl. Catal., A 300, 75 (2006).

    Article  CAS  Google Scholar 

  9. X. Yin, L. Hong and Z-L. Liu: Oxygen permeation through the LSCO-80/CeO2 asymmetric tubular membrane reactor. J. Membr. Sci. 268, 2 (2006)

    Article  CAS  Google Scholar 

  10. S. Damayanova and J.M.C. Bueno: Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal., A 253, 135 (2003).

    Article  CAS  Google Scholar 

  11. Y.F. Yao and J.T. Kummer: Low-concentration supported precious metal catalysts prepared by thermal transport. J. Catal. 106, 307 (1987).

    Article  Google Scholar 

  12. E.C. Su, C.N. Montreuil and W.G. Rothschild: Oxygen storage capacity of monolith three-way catalysts. Appl. Catal. 17, 75 (1985).

    Article  CAS  Google Scholar 

  13. S. Imamura, I. Fukuda and S. Ishida: Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides. Ind. Eng. Chem. Res. 27, 718 (1988).

    Article  CAS  Google Scholar 

  14. V.S. Mishra, V.V. Mahajani and J.B. Joshi: Wet air oxidation. Ind. Eng. Chem. Res. 34, 2 (1995).

    Article  CAS  Google Scholar 

  15. A. Trovarelli, C. de Leittenburg, M. Boaro and G. Dolcetti: Redox chemistry over CeO2-based catalysts: SO2 reduction by CO or CH4. Catal. Today 50, 381 (1999).

    Article  Google Scholar 

  16. S. Zhao and R.K. Gorte: A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions. Appl. Catal., A 277, 129 (2004).

    Article  CAS  Google Scholar 

  17. S. Kawi, Y.P. Tang, K. Hidajat and L.E. Yu: Synthesis and characterization of nanoscale CeO2 catalyst for deNOx. J. Meta-stable Nanocryst. Mater. 23, 95 (2005).

    CAS  Google Scholar 

  18. M.K. Neylon, M.J. Castagonla, N.B. Castagonla and C.L. Marshall: Coated bifunctional catalysts for NOx SCR with C3H6: Part I: Water-enhanced activity. Catal. Today 96, 53 (2004).

    Article  CAS  Google Scholar 

  19. G. Colon, J.A. Navio, R. Monaci and I. Ferino: CeO2–La2O3catalytic system Part I. Preparation and characterisation of catalysts. Phys. Chem. Chem. Phys. 2, 4453 (2000).

    Article  CAS  Google Scholar 

  20. K. Krishna, A. Bueno-Lopez, M. Makkee and J.A. Moulijn: Potential rare earth modified CeO2 catalysts for soot oxidation. I. Characterisation and catalytic activity with O2. Appl. Catal. B 75, 189 (2007).

    Article  CAS  Google Scholar 

  21. U. Hennings and R. Reimert: Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel-cell applications. Appl. Catal. B 70, 498 (2007).

    Article  CAS  Google Scholar 

  22. F.X. Liu, C.Y. Wang, Q.D. Su, T.P. Zhao and G.W. Zhao: Optical properties of nanocrystalline ceria. Appl. Opt. 36, 2796 (1997).

    Article  CAS  Google Scholar 

  23. Y.M. Chiang, E.B. Lavik and D.A. Blom: Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct. Mater. 9, 633 (1997).

    Article  CAS  Google Scholar 

  24. Z. Yanchun and M.N. Rahaman: Effect of redox reaction on the sintering behavior of cerium oxide. Acta Mater. 45, 3635 (1997).

    Article  Google Scholar 

  25. A. Tschope, D. Schaadt, R. Birringer and J.Y. Ying: Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation. Nanostruct. Mater. 9, 423 (1997).

    Article  CAS  Google Scholar 

  26. C. Laberty-Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.M. Stroud, M.S. Doescher and D.R. Rolison: Sol-gel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties. Chem. Mater. 18, 50 (2006).

    Article  CAS  Google Scholar 

  27. F. Deganello, V. Esposito, M. Miyayama and E. Traversa: Cathode performance of nanostructured La1-aSraCo1-bFebO3-x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate-nitrate autocombustion. J. Electrochem. Soc. 154, A89 (2007).

    Article  CAS  Google Scholar 

  28. D.E. Wesolowski and M.J. Cima: Nitrate-based metalorganic decomposition of CeO2 on yttria-stabilised zirconia. J. Mater. Res. 21, 1 (2006).

    Article  CAS  Google Scholar 

  29. F. Deganello, L.F. Lotta, A. Longo, M.P. Casaletto and M. Scopelitti: Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates. J. Solid State Chem. 179, 3406 (2006).

    Article  CAS  Google Scholar 

  30. J.C. Yu, L.Z. Zhang and J. Lin: Direct sonochemical preparation of high surface area nanoporous ceria and ceria–zirconia solid solutions. J. Colloid Interface Sci. 260, 240 (2003).

    Article  CAS  Google Scholar 

  31. T. Tsuzuki and P.G. McCormick: Synthesis of ultrafine ceria powders by mechanochemical processing. J. Am. Ceram. Soc. 84, 1453 (2001).

    Article  CAS  Google Scholar 

  32. H.R. Xu, L. Gao, H.C. Gu, J.K. Guo and D.S. Yan: Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method. J. Am. Ceram. Soc. 85, 39 (2002).

    Google Scholar 

  33. P.L. Chen and I.W. Chen: Reactive cerium(IV). Oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc. 76, 1577 (1993).

    Article  CAS  Google Scholar 

  34. H.I. Chen and H.Y. Chang: Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf., A 242, 61 (2004).

    Article  CAS  Google Scholar 

  35. M. Ozawa: Effect of aging temperature on CeO2 formation in homogeneous precipitation. J. Mater. Sci. 39, 4035 (2004).

    Article  CAS  Google Scholar 

  36. J.L. Woodhead: Process for preparing aqueous dispersion of ceria and resulting product. U.S. Patent No. 4231893, November 4, 1980.

    Google Scholar 

  37. B. Djuricic and S. Pickering: Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 19, 1925 (1999).

    Article  CAS  Google Scholar 

  38. J.S. Lee and S.C. Choi: Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH. Mater. Lett. 58, 390 (2004).

    Article  CAS  Google Scholar 

  39. B.P. Mandal, V. Grover and A.K. Tyagi: Phase relations, lattice thermal expansion in Ce1-xEuxO2-x/2 and Ce1-xSmxO2-x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm). Mater. Sci. Eng., A 430, 120 (2006).

    Article  CAS  Google Scholar 

  40. V. Grover and A.K. Tyagi: Phase relations, lattice thermal expansion in CeO2-Gd2O3 system, and stabilization of cubic gadolinia. Mater. Res. Bull. 39, 859 (2004).

    Article  CAS  Google Scholar 

  41. F.H. Scholes, A.E. Hughes, S.G. Hardin, P. Lynch and P.R. Miller: Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19, 2321 (2007).

    Article  CAS  Google Scholar 

  42. T. Moeller: The Chemistry of Lanthanides (Pergamon Press, Oxford, 1973).

    Google Scholar 

  43. B.P. Mandal, V. Grover, M. Roy and A.K. Tyagi: X-ray diffraction and Raman spectroscopic investigation on the phase relations in Yb2O3- and Tm2O 3-substituted CeO2. J. Am. Ceram. Soc. 90, 2961 (2007).

    Article  CAS  Google Scholar 

  44. B.P. Mandal, M. Roy, V. Grover and A.K. Tyagi: X-ray diffraction, m-Raman spectroscopic studies on CeO2-RE2O3 (RE=Ho, Er) systems: Observation of parasitic phases. J. Appl. Phys. 103, 033506 (2008).

    Article  CAS  Google Scholar 

  45. A. Nakajima, A. Yoshihara and M. Ishigame: Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 50, 13297 (1994).

    Article  CAS  Google Scholar 

  46. W.H. Weber, K.C. Hass and J.R. McBride: Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 48, 178 (1993).

    Article  CAS  Google Scholar 

  47. F. Zhang, W.S. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson and I.P. Herman: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).

    Article  CAS  Google Scholar 

  48. Q. Williams: Mineral Physics and Crystallography: A Handbook of Physical Constants (American Geophysical Union, Washington, DC, 1995).

    Google Scholar 

  49. J. Guzman, S. Carrettin and A. Corma: Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 17, 3286 (2005).

    Article  CAS  Google Scholar 

  50. V.V. Pushkarev, V.I. Kovalchuk and J.L. d’Itri: Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 108, 5341 (2004).

    Article  CAS  Google Scholar 

  51. A.J. Simaan, S. Dopner, F. Banse, S. Bourcier, G. Bouchoux, A. Boussac, P. Hildebrandt and J. Girerd: FeIII-hydroperoxo and peroxo complexes with aminopyridyl ligands and the resonance raman spectroscopic identification of the Fe-O and O-O stretching modes. Eur. J. Inorg. Chem. 1627 (2000).

  52. P.A. Giguere and T.K.K. Srinivasan: Raman study of matrix isolated H2O2 and D2O2. Chem. Phys. Lett. 33, 479 (1975).

    Article  CAS  Google Scholar 

  53. S. Banerjee, P.S. Devi, D. Topwal, S. Mandal and K. Menon: Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: Unique effect of calcium Co-doping. Adv. Funct. Mater. 17, 2847 (2007).

    Article  CAS  Google Scholar 

  54. A.E. Hughes, R.J. Taylor, B.R.W. Hinton and L. Wilson: XPS and SEM characterization of hydrated cerium oxide conversion coatings. Surf. Interface Anal. 23, 540 (1995).

    Article  CAS  Google Scholar 

  55. F. Giordano, A. Trovarelli, C. de Leitenburg and M. Giona: A model for the temperature-programmed reduction of low and high surface area ceria. J. Catal. 193, 273 (2000).

    Article  CAS  Google Scholar 

  56. H. He, H. Dai and C.T. Au: Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 90, 245 (2004).

    Article  CAS  Google Scholar 

  57. M. Pijolat, M. Prin and M. Soustelle: Thermal stability of doped ceria: Experiment and modeling. J. Chem. Soc. Faraday Trans. 91, 3941 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avesh K. Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, B.P., Grover, V., Pai, M.R. et al. Improvement of physico-chemical properties by addition of H2O2: An extensive case study on the RE-doped ceria system (RE = Gd, Sm. Journal of Materials Research 24, 2845–2854 (2009). https://doi.org/10.1557/jmr.2009.0352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0352

Navigation