Skip to main content
Log in

Influence of strain rate on the mechanical behavior of cortical bone interstitial lamellae at the micrometer scale

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Investigations of bone mechanical properties are of major importance for bone pathology research, biomaterials, and development of in vivo bone characterization devices. Because of its complex multiscale structure, assessment of bone microstructure is an important step for understanding its mechanical behavior. In this study, we have investigated the strain rate influence on the mechanical properties of interstitial lamellae on two human femur bone samples. Nanoindentation tests were performed with the continuous stiffness measurement technique. Young’s modulus and hardness were calculated using the Oliver and Pharr method. A statistical significant influence of strain rate on hardness was found (p < 0.05) showing a viscoplastic behavior of interstitial bone at the micrometer scale. This phenomenon may reflect the role of the organic component in the bone matrix mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.Y. Rho, L. Kuhn-Spearing, P. Zioupos: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).

    Article  CAS  Google Scholar 

  2. D.T. Reilly, A.H. Burstein, V.H. Frankel: The elastic modulus for bone. J. Biomech. 7, 271 (1974).

    Article  CAS  Google Scholar 

  3. D.T. Reilly, A.H. Burstein: The elastic and ultimate properties of compact bone tissue. J. Biomech. 8, 393 (1975).

    Article  CAS  Google Scholar 

  4. J.D. Currey: The mechanical properties of bone. Clin. Orth. Relat. Res. 73, 210 (1970).

    Article  Google Scholar 

  5. J.D. Currey: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21, 131 (1988).

    Article  CAS  Google Scholar 

  6. P. Zioupos, J.D. Currey: Changes in the stiffness, and toughness of human cortical bone with age. Bone 22, 57 (1998).

    Article  CAS  Google Scholar 

  7. R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, J.C. Rice: A continuous wave technique for the measurement of the elastic properties of cortical bone. J. Biomech. 17, 349 (1984).

    Article  CAS  Google Scholar 

  8. S.S. Mehta, O.K. Öz, P.P. Antich: Bone elasticity and ultrasound velocity are affected by subtle changes in the organic matrix. J. Bone Miner. Res. 13, 114 (1998).

    Article  CAS  Google Scholar 

  9. S. Bensamoun, J.M. Gherbezza, J-F. de Belleval, M-C. Ho Ba Tho: Transmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin. Biomech. (Bristol, Avon). 19, 639 (2004).

    Article  Google Scholar 

  10. A. Ascenzi, E. Bonucci: The tensile properties of single osteons. Anat. Rec. 158, 375 (1967).

    Article  CAS  Google Scholar 

  11. A. Ascenzi, E. Bonucci: The compressive properties of single osteons. Anat. Rec. 161, 377 (1968).

    Article  CAS  Google Scholar 

  12. A. Ascenzi, P. Baschieri, A. Benvenuti: The bending properties of single osteons. J. Biomech. 23, 763 (1990).

    Article  CAS  Google Scholar 

  13. A. Ascenzi, P. Baschieri, A. Benvenuti: The torsional properties of single selected osteons. J. Biomech. 27, 875 (1994).

    Article  CAS  Google Scholar 

  14. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  15. B.N. Lucas, W.C. Oliver, G.M. Pharr, and J.L. Loubet: Time dependent deformation during indentation testing, in Thin Films: Stresses and Mechanical Properties VI edited by W.W. Gerberich, H. Gao, J.E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233.

  16. A.C. Fisher-Cripps: Nanoindentation 2nd ed. (Springer-Verlag, New York, 2004).

    Book  Google Scholar 

  17. J.Y. Rho, T.Y. Tsui, G.M. Pharr: Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18, 1325 (1997).

    Article  CAS  Google Scholar 

  18. J.Y. Rho, P. Zioupos, J.D. Currey, G.M. Pharr: Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nanoindentation. J. Biomech. 35, 189 (2002).

    Article  CAS  Google Scholar 

  19. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein: Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32, 1005 (1999).

    Article  CAS  Google Scholar 

  20. J.Y. Rho, P. Zioupos, J.D. Currey, G.M. Pharr: Variation in the individual thick lamellar properties within osteons by nanoindentation. Bone 2, 295 (1999).

    Google Scholar 

  21. C.E. Hoffler, K.E. Moore, K. Kozloff, P.K. Zysset, M.B. Brown, S.A. Goldstein: Heterogeneity of bone lamellar-level elastic moduli. Bone 26, 603 (2000).

    CAS  Google Scholar 

  22. S. Hengsberger, G. Boivin, P.K. Zysset: Morphological and mechanical properties of bone structural units: A two case study. JSME Int. J. 45, 936 (2002).

    Google Scholar 

  23. S. Hengsberger, A. Kulik, P. Zysset: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological condition. Bone 30, 178 (2002).

    Article  CAS  Google Scholar 

  24. Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, G.M. Pharr: Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J. Orth. Res. 20, 806 (2002).

    Article  CAS  Google Scholar 

  25. S. Hengsberger, J. Enstroem, F. Peyrin, P.K. Zysset: How is the indentation modulus of bone tissue related to its macroscopic elastic response? A validation study. J. Biomech. 36, 1503 (2003).

    Article  CAS  Google Scholar 

  26. Z. Fan, J.Y. Rho: Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J. Biomed. Mater. Res. 67A, 208 (2003).

    Article  CAS  Google Scholar 

  27. K. Tai, H.J. Qui, C. Ortiz: Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Mater. Sci.: Mater. Med. 16, 947 (2005).

    CAS  Google Scholar 

  28. J.Y. Rho, G.M. Pharr: Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci.: Mater. Med. 10, 485 (1999).

    CAS  Google Scholar 

  29. C.E. Hoffler, X.E. Guo, P.K. Zysset, S.A. Goldstein: An application of nanoindentation technique to measure bone tissue lamellae properties. J. Biomech. Eng. 127, 1046 (2005).

    Article  Google Scholar 

  30. G. Hochstetter, A. Jimenez, J.L. Loubet: Strain-rate effects on hardness of glassy polymers in the nanoscale range—Comparison between quasi-static and continuous measurements. J. Macromol. Sci., Phys. B38, 681 (1999).

    Article  CAS  Google Scholar 

  31. D.R. Carter, W.C. Hayes: Bone compressive strength: The influence of density and strain rate. Science 194, 1174 (1976).

    Article  CAS  Google Scholar 

  32. D.R. Carter, W.C. Hayes: The compressive behaviour of bone as two-phase porous structure. J. Bone Joint Surg. Am. 59, 954 (1977).

    Article  CAS  Google Scholar 

  33. N. Sasaki, M. Yoshikawa: Stress relaxation in native and EDTA-treated bone as a function of mineral content. J. Biomech. 26, 77 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Christine Ho Ba Tho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanleene, M., Mazeran, PE. & Tho, MC.H.B. Influence of strain rate on the mechanical behavior of cortical bone interstitial lamellae at the micrometer scale. Journal of Materials Research 21, 2093–2097 (2006). https://doi.org/10.1557/jmr.2006.0255

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0255

Navigation