Skip to main content

Elastic, Viscoelastic, and Fracture Properties of Bone Tissue Measured by Nanoindentation

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

Nanoindentation is a sophisticated technique that has been used to characterize a wide selection of materials, including bone. Given the complex and hierarchical nature of bone, nanoindentation allows for assessment of composite material properties at the nano-range of bone tissue. These nanoindentation-based measures can provide important baseline information to aid in understanding the overall mechanical behavior, the pathologic changes of disease, and the pharmaceutical response of bone. In this review, the challenges and limitations of our current knowledge related to nanoindentation are presented as well as the future directions for its application to bone biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York, p 79

    Book  Google Scholar 

  2. Carter DR, Beaupre GS (2001) Skeletal function and form: mechanobiology of skeletal development, aging, and regeneration. Cambridge University Press, Cambridge

    Google Scholar 

  3. Seeman E (2003) Pathogenesis of osteoporosis. J Appl Physiol 95:2142–2151

    Google Scholar 

  4. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  Google Scholar 

  5. Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31:601–608

    Article  Google Scholar 

  6. McCreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15:2305–2308

    Article  Google Scholar 

  7. Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  Google Scholar 

  8. Seeman E, Delmas PD (2006) Bone quality – the material and structural basis of bone strength and fragility. N Engl J Med 354:2250–2261

    Article  Google Scholar 

  9. Hernandez CJ, Keaveny TM (2006) A biomechanical perspective on bone quality. Bone 39:1173–1181

    Article  Google Scholar 

  10. Renders GA, Mulder L, van Ruijven LJ, van Eijden TM (2006) Degree and distribution of mineralization in the human mandibular condyle. Calcif Tissue Int 79:190–196

    Article  Google Scholar 

  11. Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–S8

    Google Scholar 

  12. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, Stevens MM (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci USA 109:14170–14175

    Article  Google Scholar 

  13. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  Google Scholar 

  14. Ruppel M, Miller L, Burr D (2008) The effect of the microscopic and nanoscale structure on bone fragility. Osteoporos Int 19:1251–1265

    Article  Google Scholar 

  15. Boivin G, Meunier PJ (2003) Methodological considerations in measurement of bone mineral content. Osteoporosis Int 14(Suppl 5):S22–S27; discussion S27–28

    Article  Google Scholar 

  16. Yao W, Cheng Z, Koester KJ, Ager JW, Balooch M, Pham A, Chefo S, Busse C, Ritchie RO, Lane NE (2007) The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone 41:804–812

    Article  Google Scholar 

  17. Roschger P, Gupta HS, Berzlanovich A, Ittner G, Dempster DW, Fratzl P, Cosman F, Parisien M, Lindsay R, Nieves JW, Klaushofer K (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  Google Scholar 

  18. Busse B, Hahn M, Soltau M, Zustin J, Puschel K, Duda GN, Amling M (2009) Increased calcium content and inhomogeneity of mineralization render bone toughness in osteoporosis: mineralization, morphology and biomechanics of human single trabeculae. Bone 45:1034–1043

    Article  Google Scholar 

  19. Gilmore RS, Katz JL (1982) Elastic properties of apatites. J Mater Sci 17:1131–1141

    Article  Google Scholar 

  20. Grant CA, Brockwell DJ, Radford SE, Thomson NH (2009) Tuning the elastic modulus of hydrated collagen fibrils. Biophys J 97:2985–2992

    Article  Google Scholar 

  21. Burr DB (2002) The contribution of the organic matrix to bone’s material properties. Bone 31:8–11

    Article  Google Scholar 

  22. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138

    Article  Google Scholar 

  23. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement-sensing indentation systems. J Mater Res 7:1564–1583

    Article  Google Scholar 

  24. Hoffler CE, Guo XE, Zysset PK, Goldstein SA (2005) An application of nanoindentation technique to measure bone tissue Lamellae properties. J Biomech Eng 127:1046–1053

    Article  Google Scholar 

  25. Roy ME, Rho JY, Tsui TY, Evans ND, Pharr GM (1999) Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J Biomed Mater Res 44:191–197

    Article  Google Scholar 

  26. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20

    Article  Google Scholar 

  27. Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Mater Charact 48:11–36

    Article  Google Scholar 

  28. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  Google Scholar 

  29. Mittra E, Akella S, Qin YX (2006) The effects of embedding material, loading rate and magnitude, and penetration depth in nanoindentation of trabecular bone. J Biomed Mater Res A 79:86–93

    Article  Google Scholar 

  30. Fan Z, Rho JY (2003) Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res 67A:208–214

    Article  Google Scholar 

  31. Kim DG, Huja SS, Navalgund A, D’Atri A, Tee B, Reeder S, Ri Lee H (2013) Effect of estrogen deficiency on regional variation of a viscoelastic tissue property of bone. J Biomech 46:110–115

    Article  Google Scholar 

  32. Kim DG, Huja SS (2008) Nanoindentation viscosity of osteonal bone matrix is associated with degree of mineralization. Trans Orthop Res Soc 33:297

    Google Scholar 

  33. Kim DG, Huja SS, Lee HR, Tee BC, Hueni S (2010) Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation. J Biomech Eng 132:024502

    Article  Google Scholar 

  34. Huja SS, Beck FM, Thurman DT (2006) Indentation properties of young and old osteons. Calcif Tissue Int 78:392–397

    Article  Google Scholar 

  35. Rho JY, Pharr GM (1999) Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med 10:485–488

    Article  Google Scholar 

  36. Zhang J, Niebur GL, Ovaert TC (2008) Mechanical property determination of bone through nano- and micro-indentation testing and finite element simulation. J Biomech 41:267–275

    Article  Google Scholar 

  37. Wu Z, Ovaert TC, Niebur GL (2012) Viscoelastic properties of human cortical bone tissue depend on gender and elastic modulus. J Orthop Res 30:693–699

    Article  Google Scholar 

  38. Reilly DT, Burstein AH (1974) Review article. The mechanical properties of cortical bone. J Bone Joint Surg Am 56:1001–1022

    Google Scholar 

  39. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  Google Scholar 

  40. Johnson WM, Rapoff AJ (2007) Microindentation in bone: hardness variation with five independent variables. J Mater Sci Mater Med 18:591–597

    Article  Google Scholar 

  41. Mulder L, Koolstra JH, den Toonder JM, van Eijden TM (2008) Relationship between tissue stiffness and degree of mineralization of developing trabecular bone. J Biomed Mater Res A 84:508–515

    Article  Google Scholar 

  42. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59-A:954–962

    Google Scholar 

  43. Isaksson H, Nagao S, Malkiewicz M, Julkunen P, Nowak R, Jurvelin JS (2010) Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J Biomech 43:2410–2417

    Article  Google Scholar 

  44. Rho JY, Roy ME 2nd, Tsui TY, Pharr GM (1999) Elastic properties of microstructural components of human bone tissue as measured by nanoindentation. J Biomed Mater Res 45:48–54

    Article  Google Scholar 

  45. Donnelly E, Baker SP, Boskey AL, van der Meulen MC (2006) Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. J Biomed Mater Res A 77:426–435

    Article  Google Scholar 

  46. Kim DG, Hueni S, Tee BC, Lee H, Huja SS (2009) Effect of nanoindentation holding periods on correlation between viscosity and modulus of bone matrix. BMES Fall meeting, Pittsburgh, p 1256

    Google Scholar 

  47. van der Meulen MCH, Huiskes R (2002) Why mechanobiology?: a survey article. J Biomech 35:401–414

    Article  Google Scholar 

  48. Novitskaya E, Chen PY, Lee S, Castro-Cesena A, Hirata G, Lubarda VA, McKittrick J (2011) Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents. Acta Biomater 7:3170–3177

    Article  Google Scholar 

  49. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26:603–609

    Article  Google Scholar 

  50. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA (2000) Age, gender, and bone lamellae elastic moduli. J Orthop Res 18:432–437

    Article  Google Scholar 

  51. Tjhia CK, Odvina CV, Rao DS, Stover SM, Wang X, Fyhrie DP (2011) Mechanical property and tissue mineral density differences among severely suppressed bone turnover (SSBT) patients, osteoporotic patients, and normal subjects. Bone 49:1279–1289

    Article  Google Scholar 

  52. Mulder L, Koolstra JH, den Toonder JMJ, van Eijden TMGJ (2007) Intratrabecular distribution of tissues stiffness and mineralization in developing trabecular bone. Bone 41:256–265

    Article  Google Scholar 

  53. Oyen ML, Cook RF (2003) Load–displacement behavior during sharp indentation of viscous-elastic–plastic materials. J Mater Res 18:139–150

    Article  Google Scholar 

  54. Oyen ML, Ko CC (2007) Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J Mater Sci Mater Med 18:623–628

    Article  Google Scholar 

  55. Oyen ML (2006) Nanoindentation hardness of mineralized tissues. J Biomech 39:2699–2702

    Article  Google Scholar 

  56. Fischer-Cripps AC (2004) A simple phenomenological approach to nanoindentation creep. Mater Sci Eng A-Struct Mater Prop Microstruct Process 385:74–82

    Article  Google Scholar 

  57. Kim DG, Kwon HJ, Han JS, Kim D, Lee B, Park C (2013) Change of viscoelastic property at bone-implant interface in healing. IADR #3736

    Google Scholar 

  58. Kim D-G, Huja SS, Hueni S, Tee BC, Lee H (2010) Relationship between elastic modulus and viscosity of bone matrix is strong independent of species, anatomical sites, and types of bone. Trans Ortho Res Soc 56:645

    Google Scholar 

  59. Donnelly E, Williams RM, Downs SA, Dickinson ME, Baker SP, van der Meulen MCH (2006) Quasistatic and dynamic nanomechanical properties of cancellous bone tissue relate to collagen content and organization. J Mater Res 21:2106–2117

    Article  Google Scholar 

  60. Pathak S, Swadener JG, Kalidindi SR, Courtland HW, Jepsen KJ, Goldman HM (2011) Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation. J Mech Behav Biomed Mater 4:34–43

    Article  Google Scholar 

  61. Raghavan M, Sahar ND, Kohn DH, Morris MD (2012) Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone. Bone 50:942–953

    Article  Google Scholar 

  62. Tai K, Qi HJ, Ortiz C (2005) Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J Mater Sci Mater Med 16:947–959

    Article  Google Scholar 

  63. Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6:454–462

    Article  Google Scholar 

  64. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  Google Scholar 

  65. Hofstetter B, Gamsjaeger S, Phipps RJ, Recker RR, Ebetino FH, Klaushofer K, Paschalis EP (2012) Effects of alendronate and risedronate on bone material properties in actively forming trabecular bone surfaces. J Bone Miner Res 27:995–1003

    Article  Google Scholar 

  66. Tzaphlidou M (2008) Bone architecture: collagen structure and calcium/phosphorus maps. J Biol Phys 34:39–49

    Article  Google Scholar 

  67. Donnelly E, Boskey AL, Baker SP, van der Meulen MC (2010) Effects of tissue age on bone tissue material composition and nanomechanical properties in the rat cortex. J Biomed Mater Res A 92:1048–1056

    Google Scholar 

  68. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210

    Article  Google Scholar 

  69. Kourkoumelis N, Balatsoukas I, Tzaphlidou M (2012) Ca/P concentration ratio at different sites of normal and osteoporotic rabbit bones evaluated by Auger and energy dispersive X-ray spectroscopy. J Biol Phys 38:279–291

    Article  Google Scholar 

  70. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834

    Article  Google Scholar 

  71. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  Google Scholar 

  72. Garetto LP, Chen J, Parr JA, Roberts WE (1995) Remodeling dynamics of bone supporting rigidly fixed titanium implants: a histomorphometric comparison in four species including humans. Implant Dent 4:235–243

    Article  Google Scholar 

  73. Brunski JB (1999) In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 13:99–119

    Article  Google Scholar 

  74. Kallai I, Mizrahi O, Tawackoli W, Gazit Z, Pelled G, Gazit D (2011) Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc 6:105–110

    Article  Google Scholar 

  75. Pellegrini G, Seol YJ, Gruber R, Giannobile WV (2009) Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res 88:1065–1076

    Article  Google Scholar 

  76. Rios HF, Lin Z, Oh B, Park CH, Giannobile WV (2011) Cell- and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol 82:1223–1237

    Article  Google Scholar 

  77. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  Google Scholar 

  78. Asefa T, Yoshina-Ishii C, MacLachlan MJ, Ozin GA (2000) New nanocomposites: putting organic function “inside” the channel walls of periodic mesoporous silica. J Mater Chem 10:1751–1755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Gyoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, DG., Elias, K.L. (2014). Elastic, Viscoelastic, and Fracture Properties of Bone Tissue Measured by Nanoindentation. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_46

Download citation

Publish with us

Policies and ethics