Skip to main content
Log in

Mechanical property development in reactively sputtered tantalum carbide/amorphous hydrocarbon thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hardness, elastic modulus, and stress directly influence the ability of tantalum carbide/amorphous hydrocarbon (TaC/a-C:H) thin films to enhance the wear-resistance of steel tribological component surfaces. Designed factorial experiments enabled an evaluation of the effects of acetylene flow rate (QC2H2), direct current bias voltage level (Vb), and substrate rotation rate (ωRot) during deposition on the mechanical properties of reactively sputtered TaC/a-C:H films. Significant relationships were found between compressive stress level and Vb, whereas hardness and elastic modulus were dependent primarily on Vb and secondarily on QC2H2 within the studied parameter space. It is proposed that effects of ion bombardment on the a-C:H phase during growth are responsible for property dependencies on Vb. Decreases in hardness and elastic modulus with increasing QC2H2 are attributed to increased hydrogen concentration and a concomitant decreased volume fraction of TaC crystallites in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Doll and B.K. Osborn: Engineering surfaces of precision steel components, in 44th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Philadelphia, PA, April 21–26, 2001).

    Google Scholar 

  2. G.L. Doll, R.D. Evans, and S.P. Johnson: Providing oil-out protection to rolling element bearings with coatings, in 48th Annual Technical Conference Proceedings (Society of Vacuum Coaters, Denver, CO, April 23–28, 2005).

    Google Scholar 

  3. E. Rabinowicz: Friction and Wear of Materials (John Wiley & Sons, New York, 1965).

    Google Scholar 

  4. M. Grischke, K. Bewilogua, H. Dimigen: Preparation, properties and structure of metal containing amorphous hydrogenated carbon films. Mater. Manuf. Processes 8, 407 (1993).

    Article  CAS  Google Scholar 

  5. C. Strondl, N.M. Carvalho, J.T.M. De Hosson., T.G. Krug: Influence of energetic ion bombardment on W-C:H coatings deposited with W and WC targets. Surf. Coat. Technol. 200, 1142 (2005).

    Article  CAS  Google Scholar 

  6. B. Shi, W.J. Meng: Intrinsic stresses and mechanical properties of Ti-containing hydrocarbon coatings. J. Appl. Phys. 94, 186 (2003).

    Article  CAS  Google Scholar 

  7. S.J. Park, K.R. Lee, D.H. Ko, K.Y. Eun: Microstructure and mechanical properties of WC-C nanocomposite films. Diamond Relat. Mater. 11, 1747 (2002).

    Article  CAS  Google Scholar 

  8. B. Shi, W.J. Meng, L.E. Rehn, P.M. Baldo: Intrinsic stress development in Ti-C:H ceramic nanocomposite coatings. Appl. Phys. Lett. 81, 352 (2002).

    Article  CAS  Google Scholar 

  9. C. Strondl, N.M. Carvalho, J.T.M. De Hosson, G.J. van der Kolk: Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings. Surf. Coat. Technol. 162, 288 (2003).

    Article  CAS  Google Scholar 

  10. C.P. Klages and R. Memming: Microstructure and physical properties of metal-containing hydrogenated carbon films. Mater. Sci. Forum 52/53, 609 (1989).

    Google Scholar 

  11. W. van Duyn, B. van Lochem: Chemical and mechanical characterization of WC:H amorphous layers. Thin Solid Films 181, 497 (1989).

    Article  Google Scholar 

  12. K. Bewilogua, H. Dimigen: Preparation of W-C:H coatings by reactive magnetron sputtering. Surf. Coat. Technol. 61, 144 (1993).

    Article  CAS  Google Scholar 

  13. W.J. Meng, B.A. Gillispie: Mechanical properties of Ti-containing and W-containing diamond-like carbon coatings. J. Appl. Phys. 84, 4314 (1998).

    Article  CAS  Google Scholar 

  14. W. Precht, A. Czyzniewski: Deposition and some properties of carbide/amorphous carbon nanocomposites for tribological application. Surf. Coat. Technol. 174/175, 979 (2003).

    Article  CAS  Google Scholar 

  15. A. Czyzniewski: Deposition and some properties of nanocrystalline WC and nanocomposite WC/a-C:H coatings. Thin Solid Films 433, 180 (2003).

    Article  CAS  Google Scholar 

  16. W.J. Meng, R.C. Tittsworth, L.E. Rehn: Mechanical properties and microstructure of TiC/amorphous hydrocarbon nanocomposite coatings. Thin Solid Films 377/378, 222 (2000).

    Article  Google Scholar 

  17. B. Feng, D.M. Cao, W.J. Meng, L.E. Rehn, P.M. Baldo, G.L. Doll: Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system. Thin Solid Films 398/399, 210 (2001).

    Article  Google Scholar 

  18. H. Dimigen, C.P. Klages: Microstructure and wear behavior of metal-containing diamond-like coatings. Surf. Coat. Technol. 49, 543 (1991).

    Article  CAS  Google Scholar 

  19. W.J. Meng, T.J. Curtis, L.E. Rehn, P.M. Baldo: Plasma-assisted deposition and characterization of Ti-containing diamond-like carbon coatings. J. Appl. Phys. 83, 6076 (1998).

    Article  CAS  Google Scholar 

  20. V. Kulikovsky, A. Tarasenko, F. Fendrych, L. Jastrabik, D. Chvostova, F. Franc, L. Soukup: The mechanical, tribological and optical properties of Ti-C:H coatings, prepared by dc magnetron sputtering. Diamond Relat. Mater. 7, 774 (1998).

    Article  CAS  Google Scholar 

  21. T. Zehnder, P. Schwaller, F. Munnik, S. Mikhailov, J. Patscheider: Nanostructural and mechanical properties of nanocomposite nc-TiC/a-C:H films deposited by reactive unbalanced magnetron sputtering. J. Appl. Phys. 95, 4327 (2004).

    Article  CAS  Google Scholar 

  22. D.P. Monaghan, D.G. Teer, P.A. Logan, I. Efeoglu, R.D. Arnell: Deposition of wear-resistant coatings based on diamond-like carbon by unbalanced magnetron sputtering. Surf. Coat. Technol. 60, 525 (1993).

    Article  CAS  Google Scholar 

  23. C. Strondl, G.J. van der Kolk, T. Hurkmans, W. Fleischer, T. Trinh, N.M. Carvalho, J.T.M. de Hosson: Properties and characterization of multilayers of carbides and diamond-like carbon. Surf. Coat. Technol. 142, 707 (2001).

    Article  Google Scholar 

  24. R.D. Evans, J.Y. Howe, J. Bentley, G.L. Doll, J.T. Glass: Influence of deposition parameters on the composition and structure of reactively sputtered nanocomposite TaC/a-C:H thin films. J. Mater. Res. 20, 2583 (2005).

    Article  CAS  Google Scholar 

  25. D.G. Montgomery: Design and Analysis of Experiments, 5th ed. (John Wiley & Sons, New York, 2001).

    Google Scholar 

  26. M. Ohring: The Materials Science of Thin Films (Academic Press, Boston, 1992).

    Google Scholar 

  27. W.A. Brantley: Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44, 534 (1973).

    Article  CAS  Google Scholar 

  28. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  29. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, J. Robertson: Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 85, 7191 (1999).

    Article  CAS  Google Scholar 

  30. B. Shi, W.J. Meng, T.L. Daulton: Thermal expansion of Ti-containing hydrogenated amorphous carbon nanocomposite thin films. Appl. Phys. Lett. 85, 4352 (2004).

    Article  CAS  Google Scholar 

  31. H.O. Pierson: Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Westwood, NJ, 1996).

    Google Scholar 

  32. T.Y. Tsui, W.C. Oliver, G.M. Pharr: Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy. J. Mater. Res. 11, 752 (1996).

    Article  CAS  Google Scholar 

  33. Y.T. Cheng, C.M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).

    Article  Google Scholar 

  34. H. Windischmann: An intrinsic stress scaling law for polycrystalline thin films prepared by ion beam sputtering. J. Appl. Phys. 62, 1800 (1987).

    Article  CAS  Google Scholar 

  35. F.M. d’Heurle, J.M.E. Harper: Note on the origin of intrinsic stresses in films deposited via evaporation and sputtering. Thin Solid Films 171, 81 (1989).

    Article  Google Scholar 

  36. O. Knotek, R. Elsing, G. Kramer, F. Jungblut: On the origin of compressive stress in PVD coatings: An explicative model. Surf. Coat. Technol. 46, 265 (1991).

    Article  CAS  Google Scholar 

  37. D. Nir: Summary abstract: Energy dependence of the stress in diamond-like carbon films. J. Vac. Sci. Technol. A 4, 2954 (1986).

    Article  Google Scholar 

  38. C.A. Davis: A simple model for the formation of compressive stress in thin films by ion bombardment. Thin Solid Films 226, 30 (1993).

    Article  CAS  Google Scholar 

  39. T.R. Anthony: Stresses generated by impurities in diamond. Diamond Relat. Mater. 4, 1346 (1995).

    Article  CAS  Google Scholar 

  40. D.L. Smith: Thin-Film Deposition: Principles and Practice (McGraw Hill, Boston, 1995).

    Google Scholar 

  41. S. Zhang, H.T. Johnson, G.J. Wagner, W.K. Liu, K.J. Hsia: Stress generation mechanisms in carbon thin films grown by ion-beam deposition. Acta Mater. 51, 5211 (2003).

    Article  CAS  Google Scholar 

  42. W. Jacob: Surface reactions during growth and erosion of hydrocarbon films. Thin Solid Films 326, 1 (1998).

    Article  CAS  Google Scholar 

  43. J.F. Ziegler: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

    Google Scholar 

  44. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  45. S. Veprek: Electronic and mechanical properties of nanocrystalline composites when approaching molecular size. Thin Solid Films 297, 145 (1997).

    Article  CAS  Google Scholar 

  46. Y. Yin, D. McKenzine, M. Bilek: Intrinsic stress induced by substrate bias in amorphous hydrogenated silicon thin films. Surf. Coat. Technol. 198, 156 (2005).

    Article  CAS  Google Scholar 

  47. B. Paul: Prediction of elastic constants of multiphase materials. Trans. AIME 218, 36 (1960).

    CAS  Google Scholar 

  48. S.P. Dodd, M. Cankurtaran, B. James: Ultrasonic determination of the elastic and nonlinear acoustic properties of transition-metal carbide ceramics: TiC and TaC J. Mater. Sci. 38, 1107 (2003).

    Article  CAS  Google Scholar 

  49. J.C. Angus, F. Jansen: Dense “diamond-like” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A 6, 1778 (1988).

    Article  CAS  Google Scholar 

  50. J.C. Phillips: Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153 (1979).

    Article  CAS  Google Scholar 

  51. M.F. Thorpe: Continuous deformations in random networks. J. Non-Cryst. Solids 57, 355 (1983).

    Article  CAS  Google Scholar 

  52. J. Robertson: Mechanical properties and coordinations of amorphous carbons. Phys. Rev. Lett. 68, 220 (1992).

    Article  CAS  Google Scholar 

  53. H. He, M.F. Thorpe: Elastic properties of glasses. Phys. Rev. Lett. 54, 2107 (1985).

    Article  CAS  Google Scholar 

  54. A. von Keudell, M. Meier, C. Hopf: Growth mechanism of amorphous hydrogenated carbon. Diamond Relat. Mater. 11, 969 (2002).

    Article  Google Scholar 

  55. J.A. Thornton: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol. A 4, 3059 (1986).

    Article  CAS  Google Scholar 

  56. J.F. Lynch, C.G. Ruderer, W.H. Duckworth eds: Engineering Properties of Selected Ceramic Materials (American Ceramic Society, Columbus, OH, 1966).

    Google Scholar 

  57. B. Shi, W.J. Meng, R.D. Evans: Characterization of high temperature deposited Ti-containing hydrogenated carbon thin films. J. Appl. Phys. 96, 7705 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. Evans.

Additional information

Address correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R.D., Doll, G.L. & Glass, J.T. Mechanical property development in reactively sputtered tantalum carbide/amorphous hydrocarbon thin films. Journal of Materials Research 21, 1500–1511 (2006). https://doi.org/10.1557/jmr.2006.0174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0174

Navigation