Skip to main content
Log in

Sol-gel synthesis of a nanoparticulate aluminosilicate precursor for homogeneous mullite ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

An amorphous nanoparticulate aluminosilicate 3/2-mullite precursor has been synthesized and carefully characterized. The sol contained 2-nm particles of Q3(3Al) silica species together with six-coordinated alumina, which suggested an allophane-like structure of the nanoparticles. The sol remained stable for years, and formed an easily redispersible physical gel upon solvent evaporation. The gel crystallized to mullite at temperatures below 1000 °C, without going through any intermediate spinel phase. Thus, the nanoparticulate precursor is regarded as a homogeneous high-purity mullite precursor with a high Si–O–Al bond density, which is useful in the preparation of various nanostructured Al-rich aluminosilicate materials. The sols and gels were characterized by small-angle x-ray scattering, dynamic light scattering, x-ray diffraction, 27Al and 29Si magic-angle spinning (MAS) nuclear magnetic resonance spectroscopy, and differential thermal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Schneider, K. Okada, J. Pask: Mullite and Mullite Ceramics (Wiley, Chichester, UK, 1994), pp. 233–245.

    Google Scholar 

  2. T. Nishio, K. Kijima, K. Kajiwara, Y. Fujiki: The influence of preparation procedure in the mullite preparation by solution method to the mixing of Al and Si and the crystallization behavior. J. Ceram. Soc. Jpn Int. Ed. 102, 464 (1994).

    Article  Google Scholar 

  3. T. Nishio, Y. Fujiki: Preparation of mullite fiber by sol-gel method. J. Ceram. Soc. Jpn Int. Ed. 99, 638 (1991).

    Article  Google Scholar 

  4. K. Okada, S. Yasohama, S. Hayashi, A. Yasumori: Sol-gel synthesis of mullite long fibres from water solvent systems. J. Eur. Ceram. Soc. 18, 1879 (1998).

    Article  CAS  Google Scholar 

  5. K.C. Song: Preparation of mullite fibers from aluminium isopropoxide-aluminium nitrate-tetraethylorthosilicate solutions by sol-gel method. Mater. Lett. 35, 290 (1998).

    Article  CAS  Google Scholar 

  6. M. Schmücker, H. Schneider: Structural development of single phase (Type I) mullite gels. J. Sol-Gel Sci. Tech. 15, 191 (1999).

    Article  Google Scholar 

  7. K.J.D. MacKenzie, R.H. Meinhold, J.E. Patterson, H. Schneider, SchmüM. cker, D. Voll: Structural evolution in gel-derived mullite precursors. J. Eur. Ceram. Soc. 16, 1299 (1996).

    Article  CAS  Google Scholar 

  8. H. Schneider, D. Voll, B. Saruhan, J. Sanz, G. Schrader, RüC. scher, A. Mosset: Synthesis and structural characterization of non-crystalline mullite precursors. J. Non-Cryst. Solids 178, 262 (1994).

    Article  CAS  Google Scholar 

  9. H. Schneider, B. Saruhan, D. Voll, L. Merwin, A. Sebald: Mullite precursor phases. J. Eur. Ceram. Soc. 11, 87 (1993).

    Article  CAS  Google Scholar 

  10. V.C. Farmer, M.J. Adams, A.R. Fraser, F. Palmieri: Synthetic imogolite: Properties, synthesis, and possible applications. Clay Miner. 18, 459 (1983).

    Article  CAS  Google Scholar 

  11. S.I. Wada, A. Eto, K. Wada: Synthetic allophane and imogolite. J. Soil Sci. 30, 347 (1979).

    Article  CAS  Google Scholar 

  12. C. Exley, C. Schneider, F.J. Doucet: The reaction of aluminium with silicic acid in acidic solution: An important mechanism in controlling the biological availability of aluminium? Coord. Chem. Rev. 228, 127 (2002).

    Article  CAS  Google Scholar 

  13. M.A. Wilson, G.S.H. Lee, R.C. Taylor: Tetrahedral rehydration during imogolite formation. J. Non-Cryst. Solids 296, 172 (2001).

    Article  CAS  Google Scholar 

  14. K. Sinkó, R. Mezei: Preparation effects on sol-gel aluminosilicate gels. J. Non-Cryst. Solids 231, 1 (1998).

    Article  Google Scholar 

  15. K. Okada, C. Aoki, T. Ban, S. Hayashi, A. Yasumori: Effect of aging temperature on the structure of mullite precursor prepared from tetraethoxysilane and aluminium nitrate in ethanol solution. J. Eur. Ceram. Soc. 16, 149 (1996).

    Article  CAS  Google Scholar 

  16. I. Jaymes, A. Douy: New aqueous mullite precursor synthesis. Structural study by 27Al and 29Si NMR Spectroscopy. J. Eur. Ceram. Soc. 16, 155 (1996).

    Article  CAS  Google Scholar 

  17. I. Jaymes: Physico-chemical characterization of silicate powders synthesized by new sol-gel routes: Mullite. (University of Orleans, Orleans, France, 1995), pp. 35–45.

    Google Scholar 

  18. I. Jaymes, A. Douy, D. Massiot, J.P. Coutures: Characterization of mono- and diphasic mullite precursor powders prepared by aqueous routes. 27Al and 29Si MAS-NMR spectroscopy investigations. J. Mater. Sci. 31, 4581 (1996).

    Article  CAS  Google Scholar 

  19. T. Ban, S. Hayashi, A. Yasumori, K. Okada: Characterization of low temperature mullitization. J. Eur. Ceram. Soc. 16, 127 (1996).

    Article  CAS  Google Scholar 

  20. T. Henmi, P.M. Huang: Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl. Clay Sci. 1, 133 (1985).

    Article  CAS  Google Scholar 

  21. T.C. Huang, H. Toraya, T.N. Blanton, Y.J. Wu: X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Crystallogr. 26, 180 (1993).

    Article  CAS  Google Scholar 

  22. C.J. Brinker, G.W. Scherer: Sol-Gel Science (Academic Press, San Diego, CA, 1990), pp. 107, 258.

    Google Scholar 

  23. A. Guinier: Small-angle x-ray diffraction: Application for the study of ultramicroscopical phenomena. Ann. Phys. 12, 161 (1939).

    Article  CAS  Google Scholar 

  24. P. Mittelbach: On the small-angle X-ray scattering from dilute colloidal systems. VIII. Discussion about the scattering properties of uniform bodies and methods for determination of size and shape of colloidal particles. Acta Phys. Austriaca 19, 53 (1964).

    CAS  Google Scholar 

  25. J. McManus, S.E. Ashbrook, K.J.D. MacKenzie, S. Wimpiris: 27Al multiple-quantum MAS and 27Al1H CPMAS NMR study of amorphous aluminosilicates. J. Non-Cryst. Solids 282, 278 (2001).

    Article  CAS  Google Scholar 

  26. M. Schmücker, H. Schneider: A new approach on the coordination of Al in non-crystalline gels and glasses of the system Al2O3–SiO2. Ber. Bunsenges. Phys. Chem. 100, 1550 (1996).

    Article  Google Scholar 

  27. P.F. Barron, M.A. Wilson, A.S. Campbell, R.L. Frost: Detection of imogolite in soils using solid state 29Si NMR. Nature 299, 616 (1982).

    Article  CAS  Google Scholar 

  28. B.A. Goodman, J.D. Russell, B. Montez, E. Oldfield, R.J. Kirkpatrick: Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy. Phys. Chem. Miner. 12, 342 (1985).

    Article  CAS  Google Scholar 

  29. K.J.D. MacKenzie, M.E. Bowden, R.H. Meinhold: The structure and thermal transformations of allophanes studied by 29Si and 27Al high resolution solid-state NMR. Clays Clay Miner. 39, 337 (1991).

    Article  CAS  Google Scholar 

  30. K.J.D. MacKenzie, M.E. Bowden, I.W.M. Brown, A.D.R.H. Meinhold: Structure and thermal transformations of imogolite studied by 29Si and 27Al high resolution solid-state nuclear magnetic resonance. Clays Clay Miner. 37, 317 (1989).

    Article  CAS  Google Scholar 

  31. J. Hu, G.S. Kannangara Kamali, M.A. Wilson, N. Reddy: The fused silicate route to protoimogolite and imogolite. J. Non-Cryst. Solids 347, 244 (2004).

    Article  CAS  Google Scholar 

  32. E. Tkalcec, D. Hoebbel, R. Nass, H. Schmidt: Structural changes of mullite precursors in presence of polyethyleneimine. J. Non-Cryst. Solids 243, 233 (1999).

    Article  CAS  Google Scholar 

  33. D.X. Li, W.J. Thomson: Tetragonal to orthorombic transformation during mullite formation. J. Mater. Res. 6, 819 (1991).

    Article  CAS  Google Scholar 

  34. B.R. Johnson, W.M. Kriven, J. Schneider: Crystal structure development during devitrification of quenched mullite. J. Eur. Ceram. Soc. 21, 2541 (2001).

    Article  CAS  Google Scholar 

  35. E. Tkalcec, S. Kurajica, H. Ivankovic: Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200-1300°C. J. Eur. Ceram. Soc. 25, 613 (2005).

    Article  CAS  Google Scholar 

  36. T. Takei, Y. Kameshima, A. Yasumori, K. Okada: Crystallization kinetics of mullite in alumina-silica glass fibers. J. Am. Ceram. Soc. 82, 2876 (1999).

    Article  CAS  Google Scholar 

  37. T. Takei, Y. Kameshima, A. Yasumori, K. Okada: Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J. Eur. Ceram. Soc. 21, 2487 (2001).

    Article  CAS  Google Scholar 

  38. F.Y. Galakhov., S.F. Konovalova: Liquation phenomena in the system alumina-silica. Communication 1. Experimental data and their discussion. Izv. Akad. Nauk SSSR. Ser. Khim. 8, 1373 (1964).

    Google Scholar 

  39. J.F. MacDowell, G.H. Beall: Immiscibility and crystallization in alumina-silica glasses. J. Am. Ceram. Soc. 52, 17 (1969).

    Article  CAS  Google Scholar 

  40. S.H. Risbud, J.A. Pask: Calculated thermodynamic data and metastable immiscibility in the system silica-alumina. J. Am. Ceram. Soc. 60, 418 (1977).

    Article  CAS  Google Scholar 

  41. T. Ban, S. Hayashi, A. Yasumori, K. Okada: Calculation of metastable immiscibility region in the Al2O3–SiO2 system. J. Mater. Res. 11, 1421 (1996).

    Article  CAS  Google Scholar 

  42. E. Tkalcec, R. Nass, J. Schmauch, H. Schmidt, S. Kurajica, A. Bezjak, H. Ivankovic: Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry. J. Non-Cryst. Solids 223, 57 (1998).

    Article  CAS  Google Scholar 

  43. E.R. de Sola, F. Estevan, F.J. Torres, J. Alarcón: Effect of thermal treatment on the structural evolution of 3:2 and 2:1 mullite monophasic gels. J. Non-Cryst. Solids 351, 1202 (2005).

    Article  CAS  Google Scholar 

  44. J.C. Huling, G.L. Messing: Chemistry-crystallization relations in molecular mullite gels. J. Non-Cryst. Solids 147(148), 213 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarkko Leivo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leivo, J., Lindén, M., Teixeira, C.V. et al. Sol-gel synthesis of a nanoparticulate aluminosilicate precursor for homogeneous mullite ceramics. Journal of Materials Research 21, 1279–1285 (2006). https://doi.org/10.1557/jmr.2006.0152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0152

Navigation