Skip to main content
Log in

On the sulfur doping of γ-graphdiyne: A Molecular Dynamics and DFT study

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Recently, an experimental study developed an efficient way to obtain sulfur-doped γ-graphdiyne. This study has shown that this new material could have promising applications in lithium-ion batteries, but the complete understanding of how the sulfur atoms are incorporated into the graphdiyne network is still missing. In this work, we have investigated the sulfur doping process through molecular dynamics and density functional theory simulations. Our results suggest that the doped induced distortions of the γ-graphdiyne pores prevent the incorporation of more than two sulfur atoms. The most common configuration is the incorporation of just one sulfur atom per the graphdiyne pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Sun, Q. Wu, G. Shi, Energy Environ. Sci. 4, 1113(2011).

    Article  CAS  Google Scholar 

  2. H. Lee, K. Paeng, I.S. Kim, Synth. Met. 244, 36(2018).

    Article  CAS  Google Scholar 

  3. Y.S. Yun, V.-D. Le, H. Kim, S.-J. Chang, S.J. Baek, S. Park, B.H. Kim, Y.-H. Kim, K. Kang, H.-J. Jin, J. Power Sources 262, 79(2014).

    Article  CAS  Google Scholar 

  4. Z. Yang, W. Cui, K. Wang, Y. Song, F. Zhao, N. Wang, Y. Long, H. Wang, C. Huang, Chem. Eur. J. 25, 5643(2019).

    Article  CAS  Google Scholar 

  5. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396(2001)

    Article  Google Scholar 

  6. S.J. Plimpton, Comput. Phys. 117, 1(1995).

    Article  CAS  Google Scholar 

  7. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865(1996).

    CAS  Google Scholar 

  8. P. Giannozzi, {etet al.}, J. Phys.: Condens. Matter. 21, 395502(2009).

    Google Scholar 

  9. P. Giannozzi, {etet al.}, J. Phys.: Condens. Matter. 29, 465901(2017).

    CAS  Google Scholar 

  10. D.R. Lide, CRC handbook of chemistry and physics. 88th ed. CRC Press: Boca Raton, 2007.

    Google Scholar 

  11. NIST Computational Chemistry Comparison and Benchmark Database: NIST Standard Reference Database Number 101. Release 20, August 2019, Editor: Russell D. Johnson III. https://cccbdb.nist.gov (accessed in 21/02/2020).

Download references

Acknowledgments

The authors thank the Brazilian agency FAPESP (Grants 2013/08293-7, 2016/18499-0, and 2019/07157-9) for the financial support and Center for Computational Engineering and Sciences (CCES) and Center for Scientific Computing of the São Paulo State University (NCC/GridUNESP) for the computational support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, E.F., Batagin-Neto, A. & Galvao, D.S. On the sulfur doping of γ-graphdiyne: A Molecular Dynamics and DFT study. MRS Advances 5, 2701–2706 (2020). https://doi.org/10.1557/adv.2020.255

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.255

Navigation