Skip to main content
Log in

Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Ag7Fe3(P2O7)4 is a 3D structured material which has been recently studied as a possible cathode material for lithium batteries. Notably, Na7Fe3(P2O7)4 is reported to be a fast-ion conductor, yet poor electrical conductor. Here, partial replacement of Na+ for Ag+ yielded Na2Ag5Fe3(P2O7)4 pyrophosphate framework where the formation of Ag metal is proposed to increase the intrinsic low electrical conductivity of this polyanion electrode. Specifically, the Ag5Na2Fe3(P2O7)4 -Ag composite is synthesized via chemical reduction of Ag7Fe3(P2O7)4 using NaBH4. The occupancy of Ag+ and Na+ in each site was determined via Rietveld analysis of the diffraction pattern. Electrochemistry of the Ag5Na2Fe3(P2O7)4 -Ag metal composite was explored with voltammetry and galvanostatic charge/discharge cycling. The Ag5Na2Fe3(P2O7)4 -Ag metal composite electrodes displayed good rate capability assisted by the presence of Ag metal from the chemical reduction and in-situ electrochemical formation of a Ag conductive network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Armand and J. M. Tarascon, Nature 451 (7179), 652–657 (2008).

    Article  CAS  Google Scholar 

  2. M. Tamaru, S. C. Chung, D. Shimizu, S.-I. Nishimura and A. Yamada, Chem. Mater. 2013 (25), 2538–2543 (2013).

    Article  Google Scholar 

  3. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, J. Electrochem. Soc. 144 (4), 1188–1194 (1997).

    Article  CAS  Google Scholar 

  4. S. Nishimura, M. Nakamura, R. Natsui and A. Yamada, Journal of the American Chemical Society 2010 (132), 13596–13597 (2010).

    Article  Google Scholar 

  5. D. Shimizu, S.-i. Nishimura, P. Barpanda and A. Yamada, Chem. Mater. 24 (13), 2598–2603 (2012).

    Article  CAS  Google Scholar 

  6. H. Kim, S. Lee, Y.-U. Park, H. Kim, J. Kim, S. Jeon and K. Kang, Chemi. Mater. 2011 (23), 3930–3937 (2011).

    Article  Google Scholar 

  7. N. Furuta, S.-i. Nishimura, P. Barpanda and A. Yamada, Chem. Mater. 24 (6), 1055–1061 (2012).

    Article  CAS  Google Scholar 

  8. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada and J. B. Goodenough, J. Electrochem. Soc. 144 (5), 1609–1613 (1997).

    Article  CAS  Google Scholar 

  9. C. Wurm, M. Morcrette, G. Rousse, L. Dupont and C. Masquelier, Chem. Mater. 14 (6), 2701–2710 (2002).

    Article  CAS  Google Scholar 

  10. J. Cabana, J. Shirakawa, M. Nakayama, M. Wakihara and C. P. Grey, J. Mater. Chem. A 21 (27), 10012–10020 (2011).

    Article  CAS  Google Scholar 

  11. H. Gao, S. Zhang and C. Deng, Dalton Trans. 44 (1), 138–145 (2015).

    Article  CAS  Google Scholar 

  12. S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nature Mater. 2002 (1) (2002).

  13. I. Boyano, J. A. Blazquez, I. de Meatza, M. Bengoechea, O. Miguel, H. Grande, Y. H. Huang and J. B. Goodenough, J. Power Sources 195 (16), 5351–5359 (2010).

    Article  CAS  Google Scholar 

  14. Z. L. Liu, S. W. Tay, L. A. Hong and J. Y. Lee, Journal of Solid State Electrochemistry 15 (1), 205–209 (2011).

    Article  CAS  Google Scholar 

  15. D. Gryzlov, S. Novikova, T. Kulova, A. Skundin and A. Yaroslavtsev, Mater. Design 104, 95–101 (2016).

    Article  CAS  Google Scholar 

  16. H. Goktepe, H. Sahan and S. Patat, Inter. J. Hydrogen Energy 41 (23), 9774–9779 (2016).

    Article  CAS  Google Scholar 

  17. E. S. Takeuchi, A. C. Marschilok, K. Tanzil, E. S. Kozarsky, S. Zhu and K. J. Takeuchi, Chem. Mater. 2009 (21) (20), 4934–4939 (2009).

    Article  Google Scholar 

  18. K. C. Kirshenbaum, D. C. Bock, A. B. Brady, A. C. Marschilok, K. J. Takeuchi and E. S. Takeuchi, Phys. Chem. Chem. Phys. 17 (17), 11204–11210 (2015).

    Article  CAS  Google Scholar 

  19. Y. Zhang, K. C. Kirshenbaum, A. C. Marschilok, E. S. Takeuchi and K. J. Takeuchi, Chem. Mater. 2016 (28), 7619–7628 (2016).

    Article  Google Scholar 

  20. E. Quarez, O. Mentre, K. Djellab and C. Masquelier, New J. Chem. 34 (2), 287–293 (2010).

    Article  CAS  Google Scholar 

  21. C. Masquelier, F. Dyvoire and N. Rodier, J. Solid State Chem. 95 (1), 156–167 (1991).

    Article  CAS  Google Scholar 

  22. E. Quarez, O. Mentre, Y. Oumellal and C. Masquelier, New J. Chem. 33 (5), 998–1005 (2009).

    Article  CAS  Google Scholar 

  23. B. H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amy C. Marschilok, Esther S. Takeuchi or Kenneth J. Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Marschilok, A.C., Takeuchi, E.S. et al. Preparation and structure of Na2Ag5Fe3(P2O7)4 -Ag metal composite: Insights on electrochemistry. MRS Advances 2, 395–400 (2017). https://doi.org/10.1557/adv.2017.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.56

Navigation