Skip to main content

Advertisement

Log in

Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A new alluaudite-type Na2VFe2(PO4)3 with carbon composite has been prepared for the first time via a simple sol-gel method using citric acid as an assistant agent and carbon source. The crystal structure and morphology of Na2VFe2(PO4)3/C composite are well characterized by X-ray diffraction, scan electron microscope, and energy-dispersive X-ray analysis. The experimental results show that a three-dimensional [VFe2(PO3)3]2− framework in this alluaudite structure provides two types of tunnels to enable the sodium-ion transporting which contributes to the electrochemical performance. When evaluated as a cathode for sodium-ion batteries, Na2VFe2(PO4)3/C composite delivers the first specific charge capacity of 66.7 mAh g−1 and discharge capacity of 65.8 mAh g−1 at 5 mA g−1 current density. After 100 cycles, the charge capacity (~52.2 mAh g−1at 5 mA g−1) shows a good capacity retention (~78%) compared to the first cycle. Cyclic voltammetric profiles confirm the activated multi-electron reactions including the Fe2+/Fe3+, V2+/V3+, and V3+/V4+ redox couples. Furthermore, the diffusion coefficient of sodium-ion (D Na +) in this structure is also calculated based on the result of electrochemical impedance spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Goodenough JB (2012) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46:1053–1061

    Article  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935. https://doi.org/10.1126/science.1212741

    Article  CAS  Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer MCW (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613. https://doi.org/10.1021/cr100290v

    Article  CAS  Google Scholar 

  4. Yabuuchi N, Kubota K, Dahbi M (2014) Research development on sodium-ion batteries. Chem Rev 114(23):11636–11682. https://doi.org/10.1021/cr500192f

    Article  CAS  Google Scholar 

  5. Palomares V, Serras P, Villaluenga I (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5(3):5884–5901. https://doi.org/10.1039/c2ee02781j

    Article  CAS  Google Scholar 

  6. Slater MD, Kim D, Lee E (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958. https://doi.org/10.1002/adfm.201200691

    Article  CAS  Google Scholar 

  7. Pan H, Hu YS, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6(8):2338–2360. https://doi.org/10.1039/c3ee40847g

    Article  CAS  Google Scholar 

  8. Lim SY, Kim H, Chung J (2014) Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc Natl Acad Sci 111(2):599–604. https://doi.org/10.1073/pnas.1316557110

    Article  CAS  Google Scholar 

  9. Singh P, Shiva K, Celio H (2015) Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries. Energy Environ Sci 8(10):3000–3005. https://doi.org/10.1039/C5EE02274F

    Article  CAS  Google Scholar 

  10. Jian Z, Han W, Lu X (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3(2):156–160. https://doi.org/10.1002/aenm.201200558

    Article  CAS  Google Scholar 

  11. Kundu D, Talaie E, Duffort V (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448

    Article  CAS  Google Scholar 

  12. Zhu Y, Xu Y, Liu Y (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nano 5:780–787

    CAS  Google Scholar 

  13. Barpanda P, Ye T, Nishimura S (2012) Sodium iron pyrophosphate: a novel 3.0 V iron-based cathode for sodium-ion batteries. Electrochem Commun 24:116–119

    Article  CAS  Google Scholar 

  14. Barpanda P, Ye T, Avdeev M (2013) A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries. J Mater Chem A 1(13):4194–4197. https://doi.org/10.1039/c3ta10210f

    Article  CAS  Google Scholar 

  15. Barpanda P, Oyama G, Nishimura S (2014) A 3.8-V earth-abundant sodium battery electrode. Nat Commun 5:4358

    Article  CAS  Google Scholar 

  16. Kim J, Kim H, Park I (2013) LiFePO4 with an alluaudite crystal structure for lithium ion batteries. Energy Environ Sci 6(3):830–834. https://doi.org/10.1039/c3ee24393a

    Article  CAS  Google Scholar 

  17. Kim J, Kim H, Park KY (2014) Alluaudite LiMnPO4: a new Mn-based positive electrode for Li rechargeable batteries. J Mater Chem A 2(23):8632–8636. https://doi.org/10.1039/C4TA00955J

    Article  CAS  Google Scholar 

  18. Richardson TJ (2003) Phosphate-stabilized lithium intercalation compounds. J Power Sources 119:262–265

    Article  Google Scholar 

  19. Trad K, Carlier D, Croguennec L (2010) Structural study of the Li0.5Na0.5MnFe2(PO4)3 and Li0.75Na0.25MnFe2(PO4)3 alluaudite phases and their electrochemical properties as positive electrodes in lithium batteries. Inorg Chem 49:10378–10389

    Article  CAS  Google Scholar 

  20. Trad K, Carlier D, Croguennec L (2010) NaMnFe2(PO4)3 alluaudite phase: synthesis, structure, and electrochemical properties as positive electrode in lithium and sodium batteries. Chem Mater 22(19):5554–5562. https://doi.org/10.1021/cm1015614

    Article  CAS  Google Scholar 

  21. Essehli R, Belharouak I, Yahia HB (2015) Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries. Dalton Trans 44(17):7881–7886. https://doi.org/10.1039/C5DT00971E

    Article  CAS  Google Scholar 

  22. Huang W, Li B, Saleem MF (2015) Self-assembled alluaudite Na2Fe3−x Mn x (PO4)3 micro/nanocompounds for sodium-ion battery electrodes: a new insight into their electronic and geometric structure. Chem Eur J 21(2):851–860. https://doi.org/10.1002/chem.201403062

    Article  CAS  Google Scholar 

  23. Huang W, Zhou J, Li B (2015) A new route toward improved sodium ion batteries: a multifunctional fluffy Na0.67FePO4/CNT Nanocactus. Small 11(18):2170–2176. https://doi.org/10.1002/smll.201402246

    Article  CAS  Google Scholar 

  24. Essehli R, Yahia BH, Maher K (2016) Unveiling the sodium intercalation properties in Na1.860.14Fe3(PO4)3. J Power Sources 324:657–664. https://doi.org/10.1016/j.jpowsour.2016.05.125

    Article  CAS  Google Scholar 

  25. Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS). Los Alamos Natl Lab Rep LAUR p 86–748

  26. Toby BH (2001) EXPGUI: a graphical user interface for GSAS. J Appl Crystallogr 34(2):210–213. https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  27. Aragón MJ, Lavela P, Ortiz GF (2015) Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries. Chem Electro Chem 2(7):995–1002. https://doi.org/10.1002/celc.201500052

    Google Scholar 

  28. Aragon MJ, Lavela P, Ortiz GF (2015) Effect of iron substitution in the electrochemical performance of Na3V2(PO4)3 as cathode for Na-ion batteries. J Electrochem Soc 162(2):A3077–A3083. https://doi.org/10.1149/2.0151502jes

    Article  CAS  Google Scholar 

  29. Bhuvaneswari MS, Bramnik NN, Ensling D (2008) Synthesis and characterization of carbon nano fiber/LiFePO4 composites for Li-ion batteries. J Power Sources 180(1):553–560. https://doi.org/10.1016/j.jpowsour.2008.01.090

    Article  CAS  Google Scholar 

  30. Dedryvere R, Maccario M, Croguennec L (2008) X-ray photoelectron spectroscopy investigations of carbon-coated Li x FePO4 materials. Chem Mater 20(22):7164–7170. https://doi.org/10.1021/cm801995p

    Article  CAS  Google Scholar 

  31. Ma J, Li B, Du H (2012) Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. J Solid State Electrochem 16(4):1353–1362. https://doi.org/10.1007/s10008-011-1491-8

    Article  CAS  Google Scholar 

  32. Castro L, Dedryvère R, Ledeuil JB (2012) Aging mechanisms of LiFePO4//graphite cells studied by XPS: redox reaction and electrode/electrolyte interfaces. J Electrochem Soc 159(4):A357–A363. https://doi.org/10.1149/2.024204jes

    Article  CAS  Google Scholar 

  33. Hatert F, Rebbouh L, Hermann RP (2005) Crystal chemistry of the hydrothermally synthesized Na2(Mn1−x Fe x 2+)2Fe3+(PO4)3 alluaudite-type solid solution. Am Mineral 90(4):653–662. https://doi.org/10.2138/am.2005.1551

    Article  CAS  Google Scholar 

  34. Wang X, Zhang H, Xu Y (2016) CTAB-assisted multiwalled carbon nanotube-loaded NaFe2Mn(PO4)3 materials as high performance cathodes for sodium-ion batteries. RSC Adv 6(72):67986–67991. https://doi.org/10.1039/C6RA12708H

    Article  CAS  Google Scholar 

  35. Liu X, Lyu Y, Zhang Z (2014) Nanotube Li2MoO4: a novel and high-capacity material as a lithium-ion battery anode. Nano 6:13660–13667

    CAS  Google Scholar 

  36. Liu X, Liu H, Zhao Y (2016) Synthesis of the carbon-coated nanoparticle Co9S8 and its electrochemical performance as an anode material for sodium-ion batteries. Langmuir 32(48):12593–12602. https://doi.org/10.1021/acs.langmuir.6b02870

    Article  CAS  Google Scholar 

  37. Jian Z, Zhao L, Pan H (2012) Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  38. Wang D, Chen N, Li M (2015) Na3V2(PO4)3/C composite as the intercalation-type anode material for sodium-ion batteries with superior rate capability and long-cycle life. J Mater Chem A 3(16):8636–8642. https://doi.org/10.1039/C5TA00528K

    Article  CAS  Google Scholar 

  39. Saravanan K, Mason CW, Rudola A (2013) The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries. Adv Energy Mater 3:444–450

    Article  CAS  Google Scholar 

  40. Uebou Y, Kiyabu T, Okada S (2002) Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3 (M = Fe, V). Rep Inst Adv Mater Study Kyushu Univ 16:1–5

    CAS  Google Scholar 

  41. Yuan T, Cai R, Shao Z (2011) Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling-assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials. J Phys Chem C 115(11):4943–4952. https://doi.org/10.1021/jp111353e

    Article  CAS  Google Scholar 

  42. Gu F, Chen G, Wang Z (2012) Synthesis and electrochemical performances of Li4Ti4.95Zr0.05O12/C as anode material for lithium-ion batteries. J Solid State Electrochem 16(1):375–382. https://doi.org/10.1007/s10008-011-1326-7

    Article  CAS  Google Scholar 

  43. Chen J, Yang L, Fang S (2012) Synthesis of hierarchical mesoporous nest-like Li4Ti5 O12 for high-rate lithium ion batteries. J Power Sources 200:59–66. https://doi.org/10.1016/j.jpowsour.2011.10.052

    Article  CAS  Google Scholar 

  44. Zhong S, Wu L, Liu J (2012) Sol-gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries. Electrochim Acta 74:8–15. https://doi.org/10.1016/j.electacta.2012.03.181

    Article  CAS  Google Scholar 

  45. Li H, Bi X, Bai Y (2016) High-rate, durable sodium-ion battery cathode enabled by carbon-coated micro-sized Na3V2(PO4)3 particles with interconnected vertical Nanowalls. Adv Mater Interfaces 9:1500740

    Article  Google Scholar 

Download references

Funding

This work was funded by NSFC Grant (No. 51672086 and 51372089) supported through NSFC Committee of China, and the Foundation (No. 2017B030308005) was supported through the Science and Technology Bureau of Guangdong Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, M., Liu, X., Zhao, Y. et al. Synthesis of alluaudite-type Na2VFe2(PO4)3/C and its electrochemical performance as cathode material for sodium-ion battery. J Solid State Electrochem 22, 891–898 (2018). https://doi.org/10.1007/s10008-017-3826-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3826-6

Keywords

Navigation