Skip to main content
Log in

Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The electron field emission properties of sulfur-assisted nanocrystalline carbon (n-C: S) thin films grown on molybdenum substrates by hot-filament CVD technique using methane-hydrogen (CH4/H2) and hydrogen sulfide-hydrogen (H2S/H2) gas mixtures were investigated. The field emission properties of the S-assisted films are reported as a function of sulfur concentration. The incorporation of S caused structural and microstructural changes that were characterized with SEM, AFM and Raman spectroscopy (RS). The S-assisted films show smoother surfaces and smaller grains than those grown without. The lowest turn-on field measured was around 4.5 - 5.0 V/μm films grown with 500 ppm of hydrogen sulfide and at 900 °C. The electron field emission properties of S-assisted films were also compared to those grown without sulfur (i.e., intrinsic). An inverse correlation between the threshold field (Ec) and sulfur concentration was found. These finding are attributed to defect induced states within the electronic band structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Spindt, I. Brodie, L. Humphrey and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

    Google Scholar 

  2. J. A. Castellano, in Handbook of Display Technology (Academic Press, New York, 1992).

    Google Scholar 

  3. J. E. Jaskie, Mater. Res. Bull. 21, 59 (1996).

    Google Scholar 

  4. J. Robertson, Mater. Res. Soc. Symp. Proc. 509, 83 (1998) and references therein.

    Google Scholar 

  5. A. Hart, B. S. Satyanarayana, W. I. Milne and J. Robertson, Diamond and Related Materials 8, 809 (1999).

    Google Scholar 

  6. A. V. Karabutov, V. I. Konov, S. M. Pimenov, E. D. Obraztsova, V. D. Frolov, V. G. Pereverzev and A. A. Smolin, J. Wide Bandgap Materials 7, 68 (1999).

    Google Scholar 

  7. F. J. Himpsel, J. A. Knapp, J. A. Van Vechten and D. E. Eastman, Phys. Rev. B 20, 624–627 (1979)

    Google Scholar 

  8. J. Y. Shin, H. K. Baik and K. M. Song, J. Appl. Phys. 87, 7508 (2000).

    Google Scholar 

  9. G. A. J. Amartunga, S. R. P. Silva, Appl. Phys. Lett. 68, 2529 (1996)

    Google Scholar 

  10. K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amartunga, Nature, 381, 140 (1996).

    Google Scholar 

  11. C. Wang, A. Garcia, D. C. Ingran, M. Lake and M. E. Kordesch, Electronics Lett. 27, 1459 (1991).

    Google Scholar 

  12. A. A. Tallin, L. S. Pan, K. F. McCarty, T. E. Felter, H. J. Doerr, R. F. Bunshah, Appl. Phys. Lett. 69, 3842 (1996).

    Google Scholar 

  13. B. F. Coll, J. E. Jaskie, J. L. Markahm, E. P. Menu, A. A. Talin, P. VonAllmen, Mater. Res. Soc. Symp. Proc. 498, xx (1998).

    Google Scholar 

  14. J. Shiao, C. A. Zorman and R. W. Hoffman, Mater. Res. Soc. Symp. Proc. 349, 465 (1994).

    Google Scholar 

  15. R. Kalish, A. Reznik, C. Uzan-Saguy and C. Cytermann, Appl. Phys. Lett. 76, 757 (2000) and references therein.

    Google Scholar 

  16. D. S. Dandy, Thin Solid Films 381, 1 (2001).

    Google Scholar 

  17. M. N. Gamo, C. Xiao, Y. Zhang, E. Yasu, Y. Kikucji, I. Sakaguchi, T. Suzuki, Y. Sato and T. Ando, Thin Solid Films 382, 113 (2001).

    Google Scholar 

  18. S. Gupta, B. R. Weiner and G. Morell, Diamond and Related Materials 2001 (in Press)

    Google Scholar 

  19. O. Groning, O. M. Kuttel, P. Groning, and L. Schlapbach, J. Vac. Sci. Technol. B 17, 1970 (1999) and references therein.

    Google Scholar 

  20. B. L. Weiss, A. Badzian, L. Pilione, T. Badzian and W. Drawl, J. Vac. Sci. Technol. B 16, 681 (1998).

    Google Scholar 

  21. R. J. Nemanich, J. T. Glass, G. Luckovsky, and R. E. Sroder, J. Vac. Sci. Technol. A 6, 1783 (1988).

    Google Scholar 

  22. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).

    Google Scholar 

  23. S. Bhattacharyya, K. Walzer, H. Hietschold and F. Richter, J. Appl. Phys. 89, 1619 (2001).

    Google Scholar 

  24. J. Shiao, C. A. Zorman and R. W. Hoffman, Mater. Res. Soc. Symp. Proc. 349, 465 (1994).

    Google Scholar 

  25. R. Haubner, S. Bohr and B. Lux, Diamond and Related Materials 8, 171 (2000).

    Google Scholar 

  26. I. H. Shin and T. D. Lee, J. Vac. Sci. Technol. B 18, 1027 (2000).

    Google Scholar 

  27. W. Zhu, G. P. Kochanski and S. Jin, Mater. Res. Soc. Symp. Proc. 509, 53–58 (1998)

    Google Scholar 

  28. N. S. Xu, J. Chen and S. Z. Deng, Appl. Phys. Lett. 76, 2463 (2000).

    Google Scholar 

  29. G. Pananakis, G. Ghibando, R. Kies and C. Papadas, J. Appl. Phys. 78, 2635 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Weiner, B.R., Weiss, B.L. et al. Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films. MRS Online Proceedings Library 675, 691 (2001). https://doi.org/10.1557/PROC-675-W6.9.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-675-W6.9.1

Navigation