Skip to main content
Log in

Quantum and Classical Molecular Dynamics Studies of the Threshold Displacement Energy in Si Bulk and Nanowire

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Using quantum mechanical and classical molecular dynamics computer simulations, we study the full three-dimensional threshold displacement energy surface in Si. We show that the SIESTA density-functional theory method gives a minimum threshold energy of 13 eV that agrees very well with experiments, and predicts an average threshold displacement energy of 36 eV. Using the quantum mechanical result as a baseline, we discuss the reliability of the classical potentials with respect to their description of the threshold energies. We also examine the threshold energies for sputtering in a nanowire, and find that this threshold depends surprisingly strongly on which layer the atom is in.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Smith (ed.), Atomic & ion collisions in solids and at surfaces: theory, simulation and applications (Cambridge University Prss, Cambridge, UK, 1997).

    Book  Google Scholar 

  2. R. S. Averback and T. Diaz de la Rubia, in Solid State Physics, edited by H. Ehrenfest and F. Spaepen (Academic Press, New York, 1998), Vol. 51, pp. 281–402.

    Article  CAS  Google Scholar 

  3. A. V. Krasheninnikov and F. Banhart Nature Mater. 6, 723 (2007).

    Article  CAS  Google Scholar 

  4. J. Loferski and P. Rappaport Phys. Rev. 111, 432 (1958).

    Article  Google Scholar 

  5. J. Corbett and G. D. Watkins Phys. Rev. 138, 555 (1965).

    Article  CAS  Google Scholar 

  6. P. Hemment and P. Stevens J. Appl. Phys. 40, 4893 (1969).

    Article  CAS  Google Scholar 

  7. D. Marton in Low Energy Ion-Surface Interactions, edited by J. W. Rabalais (Wiley, Chester, 1994), p. 526.

  8. L. Miller D. Brice A. Prinja and S. Picraux Phys. Rev. B. 49, 16953 (1994).

    Article  CAS  Google Scholar 

  9. L. Miller D. Brice A. Prinja and T. Pricraux in Defects in Materials, MRS Symposia Proceedings No. 209, edited by P. D. Bristowe I. E. Epperson I. E. Griffith and Z. Liliental-Weber (Materials Research Society, Pittsburgh, 1991), p. 171.

  10. M.-J. Caturla T. Diaz de la Rubia, and G. H. Gilmer in Materials Synthesis and Processing Using Ion Beams, MRS Symposia Proceedings No. 316, edited by R. I. Culbertson O. W. H. amd K. S. Jones and K. Maex (Materials Research Society, Pittsburgh, 1994), p. 141.

  11. L. Miller D. Brice A. Prinja and T. Pricraux Radiat. Eff. Defects Solids 129, 127 (1994).

    Article  CAS  Google Scholar 

  12. M. Sayed J. H. Jefferson A. B. Walker and A. G. Cullis Nucl. Instrum. Methods Phys. Res. B 102, 232 (1995).

    Article  CAS  Google Scholar 

  13. P. Lucasson in Fundamental Aspects of Radiation Damage in Metals, edited by M. T. Robinson and F. N. Young Jr. (ORNL, Springfield, 1975), pp. 42–65.

  14. H. H. Andersen Appl. Phys. 18, 131 (1979).

    Article  CAS  Google Scholar 

  15. P. Jung Phys. Rev. B 23, 664 (1981).

    Article  Google Scholar 

  16. K. Nordlund J. Wallenius and L. Malerba Nucl. Instr. Meth. Phys. Res. B 246, 322 (2005).

    Google Scholar 

  17. For a review, see R. O. Jones and O. Gunnarsson Rev. Mod. Phys. 61, 689 (1989).

  18. J. B. Gibson A. N. Goland M. Milgram and G. H. Vineyard Phys. Rev 120, 1229 (1960).

    Article  CAS  Google Scholar 

  19. S. Uhlmann {etet al}, Radiat. Eff. Defects Solids 141, 185 (1997).

    Article  CAS  Google Scholar 

  20. W. Windl T. J. Lenosky J. D. Kress and A. F. Voter Nucl. Instr. and Meth. B 141, 61 (1998).

    Google Scholar 

  21. M. Mazzarolo L. Colombo G. Lulli and E. Albertazzi Phys. Rev. B 63, 195207 (2001).

    Article  CAS  Google Scholar 

  22. A. V. Krasheninnikov Y. Miyamoto and D. Tomànek, Phys. Rev. Lett. 99, 016104 (2007).

    Article  CAS  Google Scholar 

  23. E. Holmström, A. Kuronen and K. Nordlund Phys. Rev. B 78, 045202 (2008).

    Article  CAS  Google Scholar 

  24. F. H. Stillinger and T. A. Weber Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  25. J. Tersoff Phys. Rev. B 38, 9902 (1988).

    Article  CAS  Google Scholar 

  26. M. Z. Bazant E. Kaxiras and J. F. Justo, (1997).

  27. J. F. Justo {etet al}, Phys. Rev. B 58, 2539 (1998).

    Article  CAS  Google Scholar 

  28. A. Colli {etet al}, Nano Letters 8, 2188 (2008).

    Article  CAS  Google Scholar 

  29. S. Xu {etet al}, Small 1, 1221 (2005).

    Article  CAS  Google Scholar 

  30. A. V. Krasheninnikov K. Nordlund and J. Keinonen Appl. Phys. Lett. 81, 1101 (2002).

    Article  CAS  Google Scholar 

  31. J. A. Å.ström, A. V. Krasheninnikov and K. Nordlund Phys. Rev. Lett. 93, 215503 (2004).

    Article  CAS  Google Scholar 

  32. A. V. Krasheninnikov {etet al}, Phys. Rev. B 72, 125428 (2005).

    Article  CAS  Google Scholar 

  33. T. Loponen A. V. Krasheninnikov M. Kaukonen and R. M. Nieminen Phys. Rev. B 74, 073409 (2006).

    Article  CAS  Google Scholar 

  34. L. Sun {etet al}, Phys. Rev. Lett. 101, 156101 (2008).

    Article  CAS  Google Scholar 

  35. K. Nordlund 2006, PARCAS computer code. The main principles of the molecular dynamics algorithms are presented in [60, 61]. The adaptive time step and electronic stopping algorithms are the same as in [62].

    Google Scholar 

  36. J. Tersoff Phys. Rev. B 38, 9902 (1988).

    Article  CAS  Google Scholar 

  37. F. A. Stillinger and T. A. Weber Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  38. J. M. Sole {etet al}, J. Phys.: Condens. Matter 14, 2745 (2002).

    Google Scholar 

  39. H. J. C. Berendsen {etet al}, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  40. G.-X. Qian R. M. Martin and D. J. Chadi Phys. Rev. B 38, 7849 (1988).

    Article  Google Scholar 

  41. W.-K. Leung {etet al}, Phys. Rev. Lett. 83, 2351 (1999).

    Article  CAS  Google Scholar 

  42. O. K. Al-Mushadani and R. J. Needs Phys. Rev. B 68, 235205 (2003).

    Article  CAS  Google Scholar 

  43. M. Tang L. Colombo J. Zhu and T. Diaz de la Rubia, Phys. Rev. B 55, 14279 (1997).

    Article  CAS  Google Scholar 

  44. G. A. Baraff and M. Schluter Phys. Rev. B 30, 3460 (1984).

    Article  CAS  Google Scholar 

  45. Y. Bar-Yam and J. D. Joannopolous Phys. Rev. Lett. 52, 1129 (1984).

    Article  CAS  Google Scholar 

  46. R. Car P. J. Kelly A. Oshiyama and S. T. Pantelides Phys. Rev. Lett. 52, 1814 (1984).

    Article  CAS  Google Scholar 

  47. R. Car P. J. Kelly A. Oshiyama and S. T. Pantelides Phys. Rev. Lett. 54, 360 (1985).

    Article  CAS  Google Scholar 

  48. S. Goedecker T. Deutsch and L. Billard Phys. Rev. Lett. 88, 235501 (2002).

    Article  CAS  Google Scholar 

  49. M. J. Puska S. P.öykkö, M. Pesola and R. M. Nieminen Phys. Rev. B 58, 1318 (1998).

    Article  CAS  Google Scholar 

  50. S. A. Centoni {etet al}, Phys. Rev. B 72, 195206 (2005).

    Article  CAS  Google Scholar 

  51. K. Nordlund N. Runeberg and D. Sundholm Nucl. Instr. Meth. Phys. Res. B 132, 45 (1997).

    Article  CAS  Google Scholar 

  52. C. H. Grein J. Crys. Growth 180, 54 (1997).

    Article  CAS  Google Scholar 

  53. C. Fulk {etet al}, J. Electr. Mat. 35, 1449 (2006).

    Article  CAS  Google Scholar 

  54. V. S. Vavilov V. M. Patskevich B. Y. Yurkov and P. Y. Glazunov Fiz. Tverd Tela 2, 1431 (1960).

    CAS  Google Scholar 

  55. P. D. Edmondson D. Riley R. C. Birtcher and S. E. Donnelly (2008), to be published.

  56. G. P. Summers E. A. Burke and R. J. Walters IEEE Trans. in Nucl. Sci. 40, 1372 (1993).

    Article  CAS  Google Scholar 

  57. J. F. Ziegler SRIM-2003 software package, available online at http://www.srim.org.

  58. R. E. MacFarlane RSIC, PSR-118 / NJOY (1979).

  59. M. Huhtinen Nucl. Instrum. Methods Phys. Res. A 491, 194 (2002).

    Article  CAS  Google Scholar 

  60. K. Nordlund {etet al}, Phys. Rev. B 57, 7556 (1998).

    Article  CAS  Google Scholar 

  61. M. Ghaly K. Nordlund and R. S. Averback Phil. Mag. A 79, 795 (1999).

    Article  CAS  Google Scholar 

  62. K. Nordlund Comput. Mater. Sci. 3, 448 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. K. Oskenkorva for being a continued source of inspiration during the course of this work. This work was performed within the Finnish Centre of Excellence in Computational Molecular Science (CMS), financed by The Academy of Finland and the University of Helsinki. Grants of computer time from the Center for Scientific Computing in Espoo, Finland, are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmström, E., Krasheninnikov, A. & Nordlund, K. Quantum and Classical Molecular Dynamics Studies of the Threshold Displacement Energy in Si Bulk and Nanowire. MRS Online Proceedings Library 1181, 72–83 (2009). https://doi.org/10.1557/PROC-1181-DD05-02

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-1181-DD05-02

Navigation