Skip to main content
Log in

Characterization of the strain rate dependent behavior of nanocrystalline gold films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The strain rate dependence of freestanding, nanocrystalline gold films was evaluated by a microtensile technique with applied strain rates on the order of 10−4 to 10−6 s−1. Film thickness ranged from 0.25 to 1.00 μm with corresponding grain sizes of 40 to 100 nm. The plastic properties were found to be particularly sensitive to strain rate, film thickness, and grain size, while the elastic property remained relatively unchanged. The thinner films exhibited significant strain rate sensitivity, while the thicker film exhibited only marginal changes. Hall–Petch boundary hardening was observed and dominated plastic flow at larger strain rates, while diffusion-controlled deformation mechanisms appeared to be activated with increasing influence as strain rate decreased. Analysis of dislocation-based and grain-boundary diffusion-related creep suggested that the films were likely experiencing power-law creep as the dominant deformation mechanism in this grain size regime at lower strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
TABLE I.
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
TABLE II.

Similar content being viewed by others

References

  1. R.D. Emery G.L. Povirk: Tensile behavior of free-standing gold films. Part I. Coarse-grained films. Acta Mater. 51, 2067 2003

    Article  CAS  Google Scholar 

  2. R.D. Emery G.L. Povirk: Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater. 51, 2079 2003

    Article  CAS  Google Scholar 

  3. I. Chasiotis, C. Bateson, K. Timpano, A.S. McCarty, N.S. Barker J.R. Stanec: Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515, 3183 2007

    Article  CAS  Google Scholar 

  4. D.T. Read, Y.W. Cheng, R.R. Keller J.D. McColskey: Tensile properties of free-standing aluminum thin films. Scripta Mater. 45, 583 2001

    Article  CAS  Google Scholar 

  5. P.A. El-Deiry R.P. Vinci: Strain rate dependent behavior of pure aluminum and copper micro-wires in Thin Films: Stresses and Mechanical Properties IX, edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), L4.2.1, p. 159

  6. S. Sakai, H. Tanimoto H. Mizubayashi: Mechanical behavior of high-density nanocrystalline gold prepared by gas deposition method. Acta Mater. 47, 211 1998

    Article  Google Scholar 

  7. J. Mahan G.T. Charbeneau: A study of certain mechanical properties and the density of condensed specimens made from various forms of pure gold. J. Am. Acad. Gold Foil Oper. 8, 6 1965

    CAS  Google Scholar 

  8. T. Nenadovi, N. Bibi, N. Kraljevi M. Adamov: Mechanical properties of dental gold thin films. Thin Solid Films 34, 211 1976

    Article  Google Scholar 

  9. B.C. Prorok H.D. Espinosa: Effects of nanometer-thick passivation layers on the mechanical response of thin gold films. J. Nanosci. Nanotechnol. 2, 427 2002

    Article  CAS  Google Scholar 

  10. H.D. Espinosa, B.C. Prorok M. Fischer: A methodology for determining mechanical properties of freestanding thin films and MEMS materials. J. Mech. Phys. Solids 51, 47 2003

    Article  CAS  Google Scholar 

  11. H.D. Espinosa, B.C. Prorok B. Peng: Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension. J. Mech. Phys. Solids 52, 667 2004

    Article  CAS  Google Scholar 

  12. ASTM E 112-96e1, Standard Test Methods for Determining Average Grain Size, ASTM International West Conshohocken, PA 1996 Available at http://www.astm.org

  13. C.V. Thompson: Structure evolution during processing of polycrystalline films. Ann. Rev. Mater. Sci. 30, 159 2000

    Article  CAS  Google Scholar 

  14. C.L. Liu, J.M. Cohen, J.B. Adams A.F. Voter: EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf. Sci. 253, 334 1991

    Article  CAS  Google Scholar 

  15. C.V. Thompson R. Carel: Texture development in polycrystalline thin-films. Mater. Sci. Eng., B. 32, 211 1995

    Article  CAS  Google Scholar 

  16. L. Vitos, A.V. Ruban, H.L. Skriver J. Kollár: The surface energy of metals. Surf. Sci. 411, 186 1998

    Article  CAS  Google Scholar 

  17. H.J. Bunge: Texture Analysis in Materials Science Butterworths Toronto 1982

    Google Scholar 

  18. A.J. Schwartz, M. Kumar B.L. Adams: Electron Backscatter Diffraction in Materials Science Kluwer Academic Publishers New York 2000

    Book  Google Scholar 

  19. U.F. Kocks, C.N. Tomé, H.R. Wenk H. Mecking: Texture and Anisotropy Cambridge University Press Cambridge 2001

    Google Scholar 

  20. N.J. Park, D.P. Field, M.M. Nowell P.R. Besser: Effect of film thickness on the evolution of annealing texture in sputtered copper films. J. Electron. Mater. 34, 1500 2005

    Article  CAS  Google Scholar 

  21. P. Sonnweber-Ribic, P. Gruber, G. Dehm E. Arzt: Texture transition in Cu thin films: Electron backscatter diffraction vs. x-ray diffraction. Acta Mater. 54, 3863 2006

    Article  CAS  Google Scholar 

  22. M.T. Perez-Prado J.J. Vlassak: Microstructural evolution in electroplated Cu thin films. Scripta Mater. 47, 817 2002

    Article  CAS  Google Scholar 

  23. J-M. Zhang, K-W. Xu V. Ji: Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187, 60 2002

    Article  CAS  Google Scholar 

  24. C.V. Thompson R. Carel: Grain growth and texture evolution in thin films. Mater. Sci. Forum 204–206, 83 1996

    Article  Google Scholar 

  25. C.V. Thompson R. Carel: Stress and grain growth in thin films. J. Mech. Phys. Solids. 44, 657 1996

    Article  CAS  Google Scholar 

  26. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 1989

    Article  Google Scholar 

  27. C.A. Neugebauer, J.B. Newkirk D.A. Vermilyea: Structure and Properties of Thin Films John Wiley & Sons New York 1959

    Google Scholar 

  28. T.P. Weihs, S. Hong, J.C. Bravman W.D. Nix: Mechanical deflection of cantilever microbeams—A new technique for testing the mechanical-properties of thin-films. J. Mater. Res. 3, 931 1988

    Article  Google Scholar 

  29. T.P. Weihs, S. Hong, J.C. Bravman W.D. Nix: Measuring the strength and stiffness of thin film materials by mechanically deflecting cantilever microbeams in Thin Films: Stresses and Mechanical Properties, edited by J.C. Bravman, W.D. Nix, D.M. Barnett, and D.A. Smith (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 87

  30. C.W. Baek, Y.K. Kim, Y. Ahn Y.H. Kim: Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens. Actuators, A Phys. 117, 17 2005

    Article  CAS  Google Scholar 

  31. L. Wang B.C. Prorok: Investigation of the influence of grain size, texture and orientation on the mechanical behavior of freestanding polycrystalline gold films in Mechanics of Nanoscale Materials and Devices, edited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc. 924E, Warrendale, PA, 2006), 0924-Z03-13.

  32. M.A. Haque M.T.A. Saif: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study. Proc. Natl. Acad. Sci. U.S.A. 101, 6335 2004

    Article  CAS  Google Scholar 

  33. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 1989

    Article  CAS  Google Scholar 

  34. H. Van Swygenhoven A. Caro: Plastic behavior of nanophase Ni: A molecular dynamics computer simulation. Appl. Phys. Lett. 71, 1652 1997

    Article  Google Scholar 

  35. J. Schiotz, F.D. Di Tolla K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391, 561 1998

    Article  Google Scholar 

  36. L. Lu, S.X. Li K. Lu: An abnormal strain rate effect on tensile behavior in nanocrystalline copper. Scripta Mater. 45, 1163 2001

    Article  CAS  Google Scholar 

  37. E.O. Hall: The deformation and ageing of mild steel.3. Discussion of results. Proc. Phys. Soc. London B,64, 747 1951

    Article  Google Scholar 

  38. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 1953

    CAS  Google Scholar 

  39. M.F. Ashby: Deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399 1970

    Article  CAS  Google Scholar 

  40. H. Conrad K. Jung: Effect of grain size from mm to nm on the flow stress and plastic deformation kinetics of Au at low homologous temperatures. Mater. Sci. Eng., A 406, 78 2005

    Article  CAS  Google Scholar 

  41. H. Van Swygenhoven J.R. Weertman: Deformation in nanocrystalline metals. Mater. Today 9, 24 2006

    Article  Google Scholar 

  42. F. Wang K. Xu: An investigation of nanoindentation creep in polycrystalline Cu thin film. Mater. Lett. 58, 2345 2004

    Article  CAS  Google Scholar 

  43. K. Gall, N. West, K. Spark, M.L. Dunn D.S. Finch: Creep of thin film Au on bimaterial Au/Si microcantilevers. Acta Mater. 52, 2133 2004

    Article  CAS  Google Scholar 

  44. F.R.N. Nabarro: Creep at very low rates. Metall. Mater. Trans. A: Phys. Metall. Mater. Sci. 33, 213 2002

    Article  Google Scholar 

  45. J. Weertman: Creep of polycrystalline aluminium as determined from strain rate tests. J. Mech. Phys. Solids 4, 230 1956

    Article  Google Scholar 

  46. A.M. Brown M.F. Ashby: On the power-law creep equation. Scripta Metall. 14, 1297 1980

    Article  CAS  Google Scholar 

  47. R.L. Coble: A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 1963

    Article  Google Scholar 

  48. A.K. Mukherjee, J.E. Bird J.E. Dorn: Experimental correlations for high-temperature creep. Trans. ASM 62, 155 1969

    CAS  Google Scholar 

  49. R.L. Stocker M.F. Ashby: On the empirical constants in the Dorn equation (dislocation creep). Scripta Metall. 7, 115 1973

    Article  CAS  Google Scholar 

  50. J.P. Hirth J. Lothe: Theory of Dislocations McGraw Hill New York 1968

    Google Scholar 

  51. S.L. Robinson O.D. Sherby: Mechanical behavior of polycrystalline tungsten at elevated temperature. Acta Metall. 17, 109 1969

    Article  CAS  Google Scholar 

  52. S. Sakai, H. Tanimoto, E. Kita H. Mizubayashi: Characteristic creep behavior of nanocrystalline metals found for high-density gold. Phys. Rev. B 66, 214106 2002

    Article  CAS  Google Scholar 

  53. M.F. Ashby R.A. Verrall: Diffusion-accommodated flow and superplasticity. Acta Metall. 21, 149 1973

    Article  CAS  Google Scholar 

  54. G. Palumbo, S.J. Thorpe K.T. Aust: On the contribution of triple junctions to the structure and properties of nanocrystalline materials. Scripta Metall. Mater. 24, 1347 1990

    Article  CAS  Google Scholar 

  55. N. Wang, Z. Wang, K.T. Aust U. Erb: Effect of grain size on mechanical properties of nanocrystalline materials. Acta Metall. 43, 519 1995

    Article  CAS  Google Scholar 

  56. K.E. Harris A.H. King: Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater. 46, 6195 1998

    Article  CAS  Google Scholar 

  57. N. Yagi, A. Rikukawa, H. Mizubayashi H. Tanimoto: Deformation by grain rotations in nanocrystalline fcc-metals. Mater. Sci. Eng., A 442, 323 2006

    Article  CAS  Google Scholar 

  58. N. Yagi, A. Rikukawa, H. Mizubayashi H. Tanimoto: Experimental tests of the elementary mechanism responsible for creep deformation in nanocrystalline gold. Phys. Rev. B 74, 144105 2006

    Article  CAS  Google Scholar 

  59. B. Cai, Q.P. Kong, L. Lu K. Lu: Interface controlled diffusional creep of nanocrystalline pure copper. Scripta Mater. 41, 755 1999

    Article  CAS  Google Scholar 

  60. D.L. Wang, Q.P. Kong J.P. Shui: Creep of nanocrystalline Ni–P alloy. Scripta Metall. Mater. 31, 47 1994

    Article  CAS  Google Scholar 

  61. J. Deng, D.L. Wang, Q.P. Kong J.P. Shui: Stress dependence of creep in nanocrystalline Ni-P alloy. Scripta Metall. Mater. 32, 349 1995

    Article  CAS  Google Scholar 

  62. P.G. Sanders, M. Rittner, E. Kiedaisch, J.R. Weertman, H. Kung Y.C. Lu: Creep of nanocrystalline Cu, Pd, and Al–Zr. Nanostruct. Mater. 9, 433 1997

    Article  CAS  Google Scholar 

  63. Y.M. Wang, A.V. Hamza E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 2006

    Article  CAS  Google Scholar 

  64. W.F. Gale T.C. Totemeier Smithells Metals Reference Book, 8th ed. Elsevier 2004

    Google Scholar 

  65. H.J. Frost M.F. Ashby: Deformation Mechanism Maps Pergamon Press New York 1982

    Google Scholar 

  66. J. Horvath, R. Birringer H. Gleiter: Diffusion in nanocrystalline material. Solid State Commun. 62, 319 1987

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the United States National Science Foundation, Engineering Directorate, Civil and Mechanical Systems Program, under contract CMS-0528265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.C. Prorok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Prorok, B. Characterization of the strain rate dependent behavior of nanocrystalline gold films. Journal of Materials Research 23, 55–65 (2008). https://doi.org/10.1557/JMR.2008.0032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2008.0032

Navigation