Skip to main content
Log in

Nucleation of the Fe3C in reaction of methane with nanocrystalline iron

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The carburization process of nanocrystalline iron in a flow of CH4/H2 mixture under atmospheric pressure at 580 °C in a differential reactor–thermobalance was studied. The course of reaction was followed by thermogravimetry, and the phase composition of the samples carburized to different degrees was determined by x-ray diffraction (XRD) and Mössbauer spectroscopy techniques. The XRD method was also used for calculating the mean crystallite size of unconverted iron after reaction at different time intervals. An unexpected relation between the average size of iron crystallites and the degree of conversion was found. The nucleation mechanism of the nanocrystalline iron carbide in the kinetic area of the reaction, limited by the dissociative adsorption of methane, has been suggested. According to this mechanism, iron crystallites are carburized successively, from the smallest to the largest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.W. Adamson and A.P. Gast: Physical Chemistry of Surfaces, 6th ed. (Wiley, New York, 1997).

    Google Scholar 

  2. H.E. Buckley: Crystal Growth (Wiley, New York, 1951).

    Google Scholar 

  3. J.P. Hurth and G.M. Pound: Condensation and Evaporation, Nucleation and Growth Kinetics (McMillan, New York, 1963).

    Google Scholar 

  4. B. Mutaftschiev: The Atomistic Nature of Crystal Growth (Springer-Verlag, Berlin, Heidelberg, New York, 2002).

    Google Scholar 

  5. M. Volmer and A. Weber: Nucleus formation in supersaturated systems, Z. Phys. Chem. 119, 227 (1926).

    Google Scholar 

  6. R. Becker and W. Döring: Kinetic treatment of nuclear formation in supersaturated vapors, Ann. Phys. 24, 719 (1935).

    Article  CAS  Google Scholar 

  7. I.Y. Frenkela.: Theory of condensation phenomena, J. Chem. Phys. 1, 200 (1939).

    Article  Google Scholar 

  8. J.W. Christian: The Theory of Transformations in Metals and Alloys (Pergamon, Amsterdam, Boston, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2002).

    Google Scholar 

  9. P. Barret: Heterogeneous kinetics (Gauthier-Villars, Paris, France, 1973), (in French).

    Google Scholar 

  10. W.H. Orr: Oxide Nucleation and Growth. Thesis, Cornell University, Ithaca, NY (1962), Rep. 5.

    Google Scholar 

  11. T.N. Rhodin, W.H. Orr and D. Walton: Nucleation and Growth of Oxide on Metals, Mémoires Scientifiques Rev. Métallurg. LXII, 67 (1965).

    Google Scholar 

  12. J. Kunze: Nitrogen and carbon in iron and steel-thermodynamics (Akademie-Verlag, Berlin, Germany, 1990).

    Google Scholar 

  13. H.J. Grabke and E. Martin: Kinetik und Thermodynamik der Aufkohlung von a-Eisen in CH4-H2-Gemischen, Arch Eisenhüttenwes 44, 837 (1973).

    Article  CAS  Google Scholar 

  14. H.J. Grabke: Evidence of the surface concentration of carbon on gamma iron from the kinetics of the carburization in CH4-H2.Metall. Trans. 1, 2972 (1970).

    CAS  Google Scholar 

  15. H.J. Grabke: Kinetics and mechanizm of surface reactions of carburization and decarburization and of nitriding and denitriding of iron in gases, Arch Eisenhüttenwes. 46, 751975, (in German).

    Article  CAS  Google Scholar 

  16. H.J. Grabke, E.M. Müller, H.V. Speck and G. Konczos: Kinetics of the carburization of iron alloys in methane-hydrogen mixtures, Steel Res. 56, 275 (1985).

    Article  CAS  Google Scholar 

  17. I.-S. Hirano and S. Tajima: Synthesis and magnetic properties of Fe5C2 by reaction of iron oxide and carbon monoxide, J. Mater. Sci. 25, 4457 (1990).

    Article  CAS  Google Scholar 

  18. S. Tajima and I.-S. Hirano: Synthesis and magnetic properties of Fe7C3 particles with high saturation magnetization, Jpn. J. Appl. Phys. 29, 662 (1990).

    Article  CAS  Google Scholar 

  19. P.S. Pilipenko and V.V. Veselov: About the possibility of a low-temperature synthesis of the iron-, cobalt-, nickel -carbides by carburization of metals using methane, Poroshkovaia Metallurgija. 6, 91975, (in Russian).

    Google Scholar 

  20. J.W. Mellor: A comprehensive treatise on inorganic and theoretical chemistry, Vol. XIII, (Longmans, Green and Co., London, U.K., 1957).

    Google Scholar 

  21. R.A. Buyanov, V.S. Babenko, A.D. Afanasjev and A.A. Ostankovich: About the mechanism of the cauterization of carbonized precipitates during the regeneration of coke-covered). iron-catalysts, Kinet. Katal. 18, 9271977, (in Russian).

    CAS  Google Scholar 

  22. R.A. Buyanov, V.V. Chesnokov, A.D. Afanasjev and V.S. Babenko: The carbide mechanism of formation of carbon deposits and their properties on the iron-chromium dehydrogenation catalysts, Kinet. Katal. 18, 10211977, (in Russian).

    CAS  Google Scholar 

  23. V.V. Chesnokov, R.A. Buyanov and A.D. Afanasjev: About the carbide-cycle mechanism of the catalysts carburization, Kinet. Katal. 20, 4771979, (in Russian).

    CAS  Google Scholar 

  24. V.V. Chesnokov, R.A. Buyanov and A.D. Afanasjev: Mechanism of the carbon deposits formation from benzene on iron and nickel, Kinet. Katal. 28, 4031987, (in Russian).

    CAS  Google Scholar 

  25. T. Masaru and I. Takayuki: Magnetic recording medium. Japanese Patent No. JP1994000152793.

  26. I. Takashi and T. Kiminori: Magnetic recording medium and its production. Japanese Patent No. JP1993000001872.

  27. W. Arabczyk, J. Ziebro, K. Kalucki, R. Swierkowski and M. Jakrzewska: Laboratory equipment for continuous fusion of iron catalysts, Chemik. 1, 221996, (in Polish).

    Google Scholar 

  28. C. Perego and S. Peratello: Experimental methods in catalytic kinetics, Catal. Today 52, 133R (1999).

    Article  Google Scholar 

  29. J. Farrauto and C.H. Bartholomew: Fundamentals of Industrial Catalytic Processes (Chapman & Hall, London, Weinheim, New York, Tokyo, Victoria, Madras, 1997).

    Google Scholar 

  30. W. Arabczyk, W. Konicki, U. Narkiewicz, I. Jasinska and K. Kalucki: Kinetics of the Fe3C formation in the reaction of methane with nanocrystalline iron catalyst, Appl. Catal. A: General 266, 135 (2004).

    Article  CAS  Google Scholar 

  31. W. Arabczyk, U. Narkiewicz, W. Konicki and B. Grzmil: Studies of the kinetics of CH4 decomposition to Fe3C on the promoted iron catalysts, Pol. J. Chem. Technol. 4, 1 (2002).

    Google Scholar 

  32. J.W. Niemantsverdiet and van der A.M. Kraan: Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studies with Moessbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction kinetic measurements, J. Phys. Chem. 84, 3363 (1980).

    Article  Google Scholar 

  33. L.M. Tau, S. Borcar, D. Bianchi and C.O. Bennett: The chemisorption of carbon monoxide on iron/alumina, J. Catal. 87, 36 (1984).

    Article  CAS  Google Scholar 

  34. B.B.L. Seth and H.U. Ross: The mechanism of iron oxide reduction, Trans. Met. Soc. AIME 233, 180 (1965).

    CAS  Google Scholar 

  35. J.Y. Park and O. Levenspiel: The crackling core model for the reaction on solid particles, Chem. Eng. Sci. 30, 1207 (1975).

    Article  CAS  Google Scholar 

  36. W. Arabczyk, WróR. bel: A new method of the determination of the crystallites size in the iron catalyst for ammonia synthesis, in EUROPACAT-V, Abstracts, Book 1, 6-P-59 (Limerick, Ireland, 2001).

    Google Scholar 

  37. du J. Plessis: Surface Segregation (Sci-Tech Publications, Brookfield, 1990).

    Google Scholar 

  38. H.J. Grabke: Adsorption, segregation and reactions of nonmetal atoms on iron surfaces, Mater. Sci. Eng. 42, 91 (1980).

    Article  CAS  Google Scholar 

  39. W. Arabczyk and U. Narkiewicz: Segregation of carbon in iron and molybdenum, Surf. Sci. 352–354, 223 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Narkiewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narkiewicz, U., Arabczyk, W., Konicki, W. et al. Nucleation of the Fe3C in reaction of methane with nanocrystalline iron. Journal of Materials Research 20, 386–393 (2005). https://doi.org/10.1557/JMR.2005.0043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0043

Navigation