Skip to main content
Log in

Synthesis of micron particles with Fe–Fe4N core–shell structure at low-temperature gaseous nitriding of iron powder in a stream of ammonia

  • New Technologies for Obtaining and Processing Materials
  • Published:
Inorganic Materials: Applied Research Aims and scope

An Erratum to this article was published on 01 July 2016

This article has been updated

Abstract

Synthesis of the single-phase γ′-Fe4N on the surface of the micron-sized particles of iron at low-temperature gaseous nitriding of carbonyl iron powder in a stream of ammonia is studied. It is shown that synthesis of particles with such structure is possible with simultaneous control of the number of process parameters: temperature, degree of dissociation of ammonia, and treatment time. It is found that, at temperature T = 400°C and nitriding potential of the atmosphere r N ≈ 1.3 atm−1/2, the shells with a thickness of about 1 μm are formed on the particles within ~15–20 min and the powder consists of the γ-Fe4N phase within ~60 min of treatment. The mechanisms of formation of microparticles with a core–shell structure are considered. A qualitative model for the thermochemical treatment of the micron iron powder with consideration of the diffusion processes of the transport of ammonia molecules in the pore space of the powder and atomic nitrogen diffusion inside the particles is developed. Geometric and dimensional effects at nitriding of iron powders are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Chaudhuri, R.G. and Paria, S., Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev., 2011, vol. 112, pp. 2373–2433.

    Article  Google Scholar 

  2. Bychkova, A.V., Sorokina, O.N., Rosenfeld, M.A., and Kovarski, A.L., Multifunctional biocompatible coatings on magnetic nanoparticles, Russ. Chem. Rev., 2012, vol. 81, no. 11, pp. 1026–1050.

    Article  Google Scholar 

  3. Gervald, A.Yu., Gritskova, I.A., and Prokopov, N.I., Synthesis of magnetic polymeric microspheres, Russ. Chem. Rev., 2010, vol. 79, no. 3, pp. 219–229.

    Article  CAS  Google Scholar 

  4. Bhattacharyya, S., Iron nitride family at reduced dimensions: A review of their synthesis protocols and structural and magnetic properties, J. Phys. Chem. C, 2015, vol. 119, pp. 1601–1622.

    Article  CAS  Google Scholar 

  5. Kita, E., Shibata, K., Yanagihara, H., Sasaki, Y., and Kishimoto, M., Magnetic properties of core-shell type Fe16N2 nanoparticles, J. Magnetism Magn. Mater., 2007, vol. 310, pp. 2411–2413.

    Article  CAS  Google Scholar 

  6. Yamashita, S., Masubuchi, Y., Nakazawa, Y., Okayama, T., Tsuchiya, M., and Kikkawa, S., Crystal structure and magnetic properties of “α″3-Fe16N2” containing residual α-Fe prepared by low-temperature ammonia nitridation, J. Solid State Chem., 2012, vol. 194, pp. 76–79.

    Article  CAS  Google Scholar 

  7. Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., and Yang, H., Preparing γ′-Fe4N ultrafine powder by twice-nitriding method, Powder Technol., 2001, vol. 115, pp. 96–98.

    Article  CAS  Google Scholar 

  8. Huang, W., Wu, J., Guo, W., Li, R., and Cui, L., Preparation and magnetic properties of nanoscale ε-Fe3N particles, J. Alloys Compd., 2007, vol. 443, pp. 48–52.

    Article  CAS  Google Scholar 

  9. Yamaguchi, T., Sakita, M., Nakamura, M., and Kobira, T., Synthesis and characteristics of Fe4N powders and thin films, J. Magn. Magn. Mater., 2000, vol. 215, pp. 529–531.

    Article  Google Scholar 

  10. Luo, X. and Liu, S., Preparation and chemical stability of iron-nitride-coated iron microparticles, J. Magn. Magn. Mater., 2007, vol. 308, pp. L1–L4.

    Article  CAS  Google Scholar 

  11. Kovalev, E.P., Alymov, M.I., Ankudinov, A.B., Gnedovets, A.G., and Zelenskii, V.A., Low-temperature synthesis of micron nitride powders of the Fe–N system, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 2, pp. 168–172.

    Article  Google Scholar 

  12. Wang, T.C. and Kimura, S., Fluidized-bed nitridation of stainless steel powder, Mater. Manufact. Proc., 1997, vol. 12, pp. 275–290.

    Article  CAS  Google Scholar 

  13. Belyanchikov, L.N., New high-nitrogen corrosionresistant tool and high-speed steels, Russ. Metall. (Metally), 2008, no. 8, pp. 761–765.

    Article  Google Scholar 

  14. Antsiferov, V.N., Gorbachyov, I.I., Oglezneva, S.A., and Popov, V.V., Structure-phase composition and properties of mechanically alloyed high-nitrogen powder steels, Russ. J. Non-Ferrous Metals, 2012, vol. 53, no. 4, pp. 321–329.

    Article  Google Scholar 

  15. Lakhtin, Yu.M. and Kogan, Ya.D., Azotirovanie stali (Nitriding of Steel), Moscow: Mashinostroenie, 1976.

    Google Scholar 

  16. Mittemeijer, E.J. and Somers, M.A., Thermochemical Surface Engineering of Steels: Improving Materials Performance, Elsevier, 2014.

    Google Scholar 

  17. Minagawa, M., Yanagihara, H., Kishimoto, M., and Kita, E., Synthesis of ε-FexN (2 ≤ x ≤ 3) submicron particles and the diffusion mechanism of nitrogen atoms, Mater. Trans., 2010, vol. 51, pp. 2173–2176.

    Article  CAS  Google Scholar 

  18. Qiu, Y. and Gao, L., Nitridation reaction of aluminum powder in flowing ammonia, J. Eur. Ceram. Soc., 2003, vol. 23, pp. 2015–2022.

    Article  CAS  Google Scholar 

  19. Pelka, R., Kielbasa, K., and Arabczyk, W., Catalytic ammonia decomposition during nanocrystalline iron nitriding at 475°C with NH3/H2 mixtures of different nitriding potentials, J. Phys. Chem. C, 2014, vol. 118, pp. 6178–6185.

    Article  CAS  Google Scholar 

  20. Moszynski, D., Nitriding of nanocrystalline iron in the atmospheres with variable nitriding potential, J. Phys. Chem., 2014, vol. 118, pp. 15440–15447.

    CAS  Google Scholar 

  21. Bannykh, O.A., Zinchenko, V.M., Prusakov, B.A., and Syropyatov, V.Y., Development of nitriding in Russia. Fourth period (1980–Present Time): New directions in the development of LTCTT, Metal Sci. Heat Treat., 2001, vol. 43, no. 3, pp. 131–137.

    Article  CAS  Google Scholar 

  22. Mittemeijer, E.J. and Somers, M.A., Thermodynamics, kinetics, and process control of nitriding, Surf. Eng., 1997, vol. 13, pp. 483–497.

    Article  CAS  Google Scholar 

  23. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.

    Google Scholar 

  24. Cunningham, R.E. and Williams, R.J.J., Diffusion in Gases and Porous Media, New York: Springer Sci., 1980.

    Book  Google Scholar 

  25. Somers, M.A. and Mittemeijer, E.J., Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides, Metallur. Mater. Trans. A, 1995, vol. 26, pp. 57–74.

    Article  Google Scholar 

  26. Belmonte, T., Gouné, M., and Michel, H., Numerical modeling of interstitial diffusion in binary systems. Application to iron nitriding, Mater. Sci. Eng. A, 2001, vol. 302, pp. 246–257.

    Article  Google Scholar 

  27. Levenspiel, O., Chemical Reaction Engineering, New York: Wiley, 1999.

    Google Scholar 

  28. Geguzin, Ya.E., Diffuzionnaya zona (The Diffusion Zone), Moscow: Nauka, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Gnedovets.

Additional information

Original Russian Text © A.G. Gnedovets, A.B. Ankudinov, V.A. Zelenskii, E.P. Kovalev, H. Wisniewska-Weinert, M.I. Alymov, 2015, published in Perspektivnye Materialy, 2015, No. 12, pp. 62–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnedovets, A.G., Ankudinov, A.B., Zelenskii, V.A. et al. Synthesis of micron particles with Fe–Fe4N core–shell structure at low-temperature gaseous nitriding of iron powder in a stream of ammonia. Inorg. Mater. Appl. Res. 7, 303–309 (2016). https://doi.org/10.1134/S2075113316020106

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113316020106

Keywords

Navigation