Skip to main content
Log in

Interfacial evolution between Cu and Pb–free Sn–Zn–Ag–Al solders upon aging at 150 °C

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The interfacial intermetallic formation at 150 °C between Cu and various solders, including Sn–9Zn, Sn–8.55Zn–1Ag, and Sn–8.55Zn–1Ag–XAl was investigated. The Al contents X of the quaternary solder alloys investigated were 0.01–0.45 wt.%. The compositions and the growth kinetics of intermetallic compounds (IMCs) were investigated. The IMC consisted of three layers for Sn–9Zn/Cu, Sn–Zn–Ag/Cu, and Sn–Zn–Ag–XAl/Cu specimens after aging for 100–600 h. These three layers included the Cu3(Zn, Sn) phase adjacent to the solder, the Cu6(Sn, Zn)5 phase in the middle, and the Cu–rich phase near to Cu. For long–term aging time over 1000 h, the Cu6(Sn, Zn)5 phase grew, while the Cu3(Zn, Sn) phase diminished. Al segregation formed in the IMC for all of the Sn–Zn–Ag–XAl/Cu specimens after aging.Cracks formed, when aged for 1000 h, at the solder/IMC interface or within the IMC layer for the following solders: Sn–9Zn, Sn–8.55Zn–1Ag, Sn–8.55Zn–1Ag–0.1Al, Sn–8.55Zn–1Ag–0.25Al, and Sn–8.55Zn–1Ag–0.45Al. The crack was not detected up to 3000 h for the Sn–8.55Zn–1Ag–0.01Al/Cu couple, of which the IMC growth rate was the slowest among all solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.G. Yost, in The Metal Science of Joining, edited by M.J. Cieslak, J.H. Perepezko, S. Kang, and M.E. Glicksman (TMS, Warrendale, PA, 1992), p. 49.

  2. M. McCormack, S. Jin, and H.S. Chen, J. Electron. Mater. 23, 687 (1994).

    Article  CAS  Google Scholar 

  3. K.L. Lin, L.H. Wen, and T.P. Liu, J. Electron. Mater. 27, 97 (1998).

    Article  CAS  Google Scholar 

  4. K.L. Lin and T.P. Liu, Mater. Chem. Phy. 56, 171 (1998).

    Article  CAS  Google Scholar 

  5. M. Yamashita, S. Tada, and K. Shiokawa, United States Patent No. US006156132A, Dec. 5, 2000.

  6. H. Mavoori, J. Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine. J. Electron. Mater. 26, (1997).

  7. S.P. Yu, M.H. Hon, and M.C. Wang, J. Electron. Mater. 16, 76 (2001).

    CAS  Google Scholar 

  8. Z. Mei and J.M. Morris, Jr., J. Electron. Mater. 21, 599 (1992).

    Article  CAS  Google Scholar 

  9. W.J. Plumbridge, J. Mater. Sci. 31, 2501 (1996).

    Article  CAS  Google Scholar 

  10. S. Ahat, M. Sheng, and L. Luo, J. Electron. Mater. 30, 1317 (1999).

    Article  Google Scholar 

  11. K. Suganuma, K. Niihara, T. Shoutoku, and Y. Nakamura, J. Mater. Res. 13, 2859 (1998).

    Article  CAS  Google Scholar 

  12. G.Y. Li, Mater. Sci. Eng. B 88, 47 (2002).

    Article  Google Scholar 

  13. W.K. Choi, J.H. Kim, S.W. Teong, and H.M. Lee, J. Mater. Res. 17, 43 (2002).

    Article  CAS  Google Scholar 

  14. T.Y. Lee, W.J. Choi, and K.N. Tu, J.W. Jang, S.M. Kao, J.W. Jang, S.M. Kuo, J.K. Lin, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Mater. Res. 17, 291 (2002).

    Article  CAS  Google Scholar 

  15. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 70, 71.

    Google Scholar 

  16. K. Suganuma, T. Murata, H. Noguchi, and Y. Toyoda, J. Mater. Res. 15, 884 (2000).

    Article  CAS  Google Scholar 

  17. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of Thermodynamic Properties of Binary Alloys (ASM, Metals Park, OH, 1973), pp. 19, 1336.

    Google Scholar 

  18. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 85, 86.

    Google Scholar 

  19. S. Ahat, M. Shang, and L. Luo, J. Mater. Res. 16, 2914 (2001).

    CAS  Google Scholar 

  20. W. Yang, R.W. Messler, Jr., and L.E. Felton, J. Electron. Mater. 23, 765 (1994).

    Article  CAS  Google Scholar 

  21. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, and L. Kacprzak, Binary Alloy Phase Diagram, 2nd ed. (ASM New York, 1987), pp. 2085, 2086.

  22. K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng, and J.K. Kivilahti, J. Appl. Phys. 89, 4849 (2001).

    Google Scholar 

  23. D.R. Flanders, E.G. Jacobs, and R.F. Pinizzotto, J. Electron. Mater. 26, 883 (1997).

    Article  CAS  Google Scholar 

  24. S.W. Chen and Y.W. Yen, J. Electron. Mater. 28, 1203 (1999).

    Article  CAS  Google Scholar 

  25. G. Careri and A. Paoletti, Nuovo Cimento 10, 575 (1958).

    Google Scholar 

  26. G. Careri, A. Paoletti, and M. Vincentini, Nuovo Cimento 10, 1088 (1958).

    Article  CAS  Google Scholar 

  27. C.H. Ma and R.A. Swalin, J. Chem. Phys. 36, 3014 (1962).

    Article  CAS  Google Scholar 

  28. Y.P. Gupta, Acta Metall. 14, 1007 (1966).

    Article  CAS  Google Scholar 

  29. C.H. Ma and R.A. Swalin, Acta Metall. 8, 388 (1960).

    Article  CAS  Google Scholar 

  30. G. Ghosh, Acta Mater. 49, 2609 (2001).

    Article  CAS  Google Scholar 

  31. K.L. Lin and H.M. Hsu, J. Electron. Mater. 30, 1068 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S.C., Lin, K.L. Interfacial evolution between Cu and Pb–free Sn–Zn–Ag–Al solders upon aging at 150 °C. Journal of Materials Research 18, 1795–1803 (2003). https://doi.org/10.1557/JMR.2003.0249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0249

Navigation