Skip to main content
Log in

Creep of Lanthanum Gallate

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Strontium- and magnesium-doped lanthanum gallate (LSGM) was deliberately prepared to give A-site deficient nonstoichiometry with compositions (La0.9Sr0.1)z(Ga0.8Mg0.2)O3-δ (z = 1.0, 0.98, and 0.95). Creep tests in four-point bending for 950 °C < T < 1350 °C and 15 MPa < σ < 75 MPa in air demonstrated that all three compositions shared a common stress dependence, n= 1.49 ± 0.10, and a common apparent activation energy, Q = 426 ± 9 kJ/mol. Despite this agreement, the creep rates of the different compositions depended on grain size in different ways: p = 3.1 ± 0.2 for z = 0.98, and p = 1.9 ± 0.1 for z = 0.95. The measured apparent activation energy, Q, for creep is similar, though statistically significantly smaller, than that measured in another LSGM. Both are nearly twice as large as reported activation energies for cation impurity diffusion. The absolute magnitude of the creep rates, after correction for grain size, were 30 to 100 times slower than in another LSGM of similar composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994).

    Article  CAS  Google Scholar 

  2. J. Wolfenstine, Solid State Ionics 126, 293 (1999).

    Article  CAS  Google Scholar 

  3. W.R. Cannon and T.G. Langdon, J. Mater. Sci. 18, 1 (1983).

    Article  CAS  Google Scholar 

  4. A. Hynes and R. Doremus, Crit. Rev. Solid State Mater. Sci. 21, 129 (1996).

    Article  CAS  Google Scholar 

  5. P. Li, S-I. Karato, and Z. Wang, Phys. Earth Planet. Inter. 95, 19 (1996).

    Article  CAS  Google Scholar 

  6. H. Yamada, J. Mater. Sci. 19, 2639 (1984).

    Article  CAS  Google Scholar 

  7. J.L. Routbort, K.C. Goretta, R.E. Cook, and J. Wolfenstine, Solid State Ionics 129, 53 (2000).

    Article  CAS  Google Scholar 

  8. J. Wolfenstine, P. Huang, and A. Petric, J. Electrochem. Soc. 147, 1668 (2000).

    Article  CAS  Google Scholar 

  9. R.E. Cook, K.C. Goretta, J. Wolfenstine, P. Nash, and J.L. Routbort, Acta Mater. 47, 2969 (1999).

    Article  CAS  Google Scholar 

  10. J. Wolfenstine, K.C. Goretta, R.E. Cook, and J.L. Routbort, Solid State Ionics 92, 75 (1996).

    Article  CAS  Google Scholar 

  11. E.T. Park, P. Nash, J. Wolfenstine, K.C. Goretta, and J.L. Routbort, J. Mater. Sci. 14, 523 (1999).

    CAS  Google Scholar 

  12. C. Carry and A. Mocellin, J. Am. Ceram. Soc. 69, C215 (1986).

    Article  CAS  Google Scholar 

  13. G. Majkic, L. Wheeler, and K. Salama, Acta Mater. 48, 1907 (2000).

    Article  CAS  Google Scholar 

  14. F.R.N. Nabarro, in Report of a Conference on Strength of Solids (Physical Society) (Great Britain, 1948), pp. 75–90.

  15. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  16. R.L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  17. T.G. Langdon, Acta Metall. Mater. 42, 2437 (1994).

    Article  CAS  Google Scholar 

  18. O.A. Ruano, J. Wadsworth, J. Wolfenstine, and O.D. Sherby, Mater. Sci. Eng. A A165, 133 (1993).

    Article  CAS  Google Scholar 

  19. R.C. Gifkins, Metall. Trans. A 7A, 1225 (1976).

    Article  CAS  Google Scholar 

  20. R. Raj and M.F. Ashby, Metall. Trans. 2, 1113 (1971).

    Article  Google Scholar 

  21. E. Arzt, M.F. Ashby, and R.A. Verrall, Acta Metall. 31, 1977 (1983).

    Article  CAS  Google Scholar 

  22. M.F. Ashby and R.A. Verrall, Acta Metall. 21, 149 (1973).

    Article  CAS  Google Scholar 

  23. J.N. Wang, Acta Mater. 48, 1517 (2000).

    Article  CAS  Google Scholar 

  24. C.P. Khattak and D.E. Cox, Mater. Res. Bull. 12, 463 (1977).

    Article  CAS  Google Scholar 

  25. S. Baskaran, C.A. Lewinsohn, Y-S. Chou, M. Qian, J.W. Stevenson, and T.R. Armstrong, J. Mater. Sci. 34, 3913 (1999).

    Article  CAS  Google Scholar 

  26. J.W. Stevenson, T.R. Armstrong, L.R. Pederson, J. Li, C.A. Lewinsohn, and S. Baskaran, Solid State Ionics 113–115, 571 (1998).

    Article  Google Scholar 

  27. M.I. Mendelson, J. Am. Ceram. Soc. 52, 443 (1969).

    Article  CAS  Google Scholar 

  28. Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, Standard C1161-94, Annual Book of ASTM Standards (American Society for Testing and Materials, 1998), Vol. 15.01.

  29. G.W. Hollenberg, G.R. Terwilliger, and R.S. Gordon, J. Am. Ceram. Soc. 54, 196 (1971).

    Article  CAS  Google Scholar 

  30. K.J. Yoon, S.M. Wiederhorn, and W.E. Luecke, J. Am. Ceram. Soc. 83, 2017 (2000).

    Article  CAS  Google Scholar 

  31. T-J. Chuang, J. Am. Ceram. Soc. 81, 2749 (1998).

    Article  CAS  Google Scholar 

  32. C-F. Chen and T-J. Chuang, J. Am. Ceram. Soc. 73, 2366 (1990).

    Article  CAS  Google Scholar 

  33. T-J. Chuang, J. Mater. Sci. 21, 165 (1986).

    Article  Google Scholar 

  34. K. Huang, R.S. Tichy, and J.B. Goodenough, J. Am. Ceram. Soc. 81, 2565 (1998).

    Article  CAS  Google Scholar 

  35. E. Djurado and M. Labeau, J. Eur. Ceram. Soc. 18, 1397 (1998).

    Article  CAS  Google Scholar 

  36. J.L. Routbort, K.C. Goretta, A.R. de Arellano Lo´pez, and J. Wolfenstine, Scr. Mater. 38, 315 (1998).

    Article  CAS  Google Scholar 

  37. W.E. Luecke and S.M. Wiederhorn, J. Am. Ceram. Soc. 80, 831 (1997).

    Article  CAS  Google Scholar 

  38. T. Ishihara, J.A. Kilner, M. Honda, N. Sakai, H. Yokokawa, and Y. Takita, Solid State Ionics 113–115, 593 (1998).

    Article  Google Scholar 

  39. M.S. Khan, M.S. Islam, and D.R. Bates, J. Phys. Chem. B 102, 3099 (1998).

    Article  CAS  Google Scholar 

  40. O. Schulz and M. Martin, Solid State Ionics, 135, 549 (2000).

    Article  CAS  Google Scholar 

  41. O. Schulz and M. Martin, in Mass and Charge Transport in Inorganic Materials: Fundamentals to Devices, No. 29 in Advances in Science and Technology, edited by P. Vincenzini and V. Buscaglia (Techna, Faenza, Italy, 2000), pp. 83–90.

  42. W. Mendenhall and T. Sincich, Statistics for Engineering and the Sciences (Dellen Publishing Company, New York, 1992), Chap. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Luecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luecke, W.E., Armstrong, T.R. Creep of Lanthanum Gallate. Journal of Materials Research 17, 532–541 (2002). https://doi.org/10.1557/JMR.2002.0075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0075

Navigation