Skip to main content
Log in

Nanocrystals in crystalline silicon: Void formation and hollow particles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanophase precipitates of CdS formed in amorphous SiO2 by ion implantation and thermal processing have recently been found to exhibit a “hollow-particle” or “shell-like” microstructure. The present investigations show that this hollow-particle microstructure can be reproduced for a variety of materials other than CdS, and these results provide new insight into the mechanisms responsible for the formation of hollow precipitates embedded in solid hosts. Various elemental metal nanocrystals were formed in (100)-oriented crystalline Si hosts by ion implantation coupled with thermal treatments in which the annealing parameters were varied to investigate the “hollow-particle” formation conditions. The results indicate that depending on the melting points and vapor pressure of the precipitates or on the initial state of the host material, several processes acting either independently or in concert can lead to hollow precipitate formation. First, the implantation of materials having a high vapor pressure, either at the implant temperature or when heated during annealing, can lead to the formation of cavities in the crystalline host. Hollow precipitates can then form by a partial filling and coating of the cavity walls by the implanted species in a diffusion-based gettering/ripening process. Internal void formation can also occur or be enhanced by volume contraction during cooling if the particle solidifies from a liquid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Meldrum, R.F. Haglund Jr., L.A. Boatner, and C.W. White. Adv. Mater. (in press).

  2. Proceedings of the XXth International conference on Ion Beam Modification of Materials, edited by A. Polman, Nucl. Instrum. Methods Phys. Rev. B 148 (Elsevier, Amsterdam, The Netherlands, 1999).

  3. A. Meldrum, L.A. Boatner, C.W. White, and R.C. Ewing, Mater. Res. Innovations 3, 204 (2000).

    Article  Google Scholar 

  4. L. Brus, in World Technology Evaluation Center Workshop Report on R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices in the United States, Proceedings of the May 8-9, 1997, Workshop.

  5. R. Siegel, Phys. Today Oct., 64 (1993).

  6. A.P. Alivisatos, Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  7. A. Meldrum, C.W. White, L.A. Boatner, I.M. Anderson, R.A. Zuhr, E. Sonder, and J.D. Budai, and D.O. Henderson, Nucl. Instrum. Methods Phys. Res. B149, 957 (1999).

  8. J.D. Budai, C.W. White, S.P. Withrow, M.F. Chisholm, J.G. Zhu, and R.A. Zuhr, Nature 390, 384 (1997).

    Article  CAS  Google Scholar 

  9. A. Meldrum, R.A. Zuhr, E. Sonder, J.D. Budai, C.W. White, L.A. Boatner, D.O. Henderson, and R.C. Ewing, Appl. Phys. Lett. 74, 699 (1999).

    Article  Google Scholar 

  10. A. Meldrum, E. Sonder, R.A. Zuhr, I.M. Anderson, J.D. Budai, C.W. White, L.A. Boatner, and D.O. Henderson, J. Mater. Res. 14, 4502 (1999).

    Article  Google Scholar 

  11. J.P. McCaffrey, B.T. Sullivan, J.W. Fraser, and D.L. Callahan, Micron 27, 407 (1996).

    Article  Google Scholar 

  12. B. Wunderlich, J. Cryst. Growth 48, 227 (1980).

    Article  CAS  Google Scholar 

  13. N.D. Theodore, T.L. Alford, C.B. Carter, J.W. Mayer, and N.W. Cheung, Appl. Phys. A 54, 124 (1992).

    Article  Google Scholar 

  14. A.N. Nesmeyanov, Vapor Pressure of the Chemical Elements (Elsevier, Amsterdam, The Netherlands, 1963).

    Google Scholar 

  15. J. Wong-Leung, J.S. Williams, R.G. Elliman, E. Nygren, D.J. Eaglesham, D.C. Jacobson, and J.M. Poate, Nucl. Instrum. Methods Phys. Res. B96, 253 (1995).

  16. D.M. Follstaedt, S.M. Myers, G.A. Petersen, and J.W. Medernach, J. Electron. Mater. 25, 151 (1996).

    Article  Google Scholar 

  17. V. Raineri, P.G. Fallica, G. Percolla, A. Battaglia, M. Barbagallo, and S.U. Campisano, J. Appl. Phys. 78, 3727 (1995).

    Article  CAS  Google Scholar 

  18. E. Antoncik, Appl. Phys. A 56, 291 (1993).

    Article  Google Scholar 

  19. A. Herrera Gomez, P.M. Rousseau, G. Materlik, T. Kendelewicz, J.C. Woicik, P.B. Griffin, J. Plummer, and W.E. Spicer, Appl. Phys. Lett. 68, 3090 (1996).

    Article  CAS  Google Scholar 

  20. J. Wong-Leung, E. Nygren, and J.S. Williams, Appl. Phys. Lett. 67, 416 (1995).

    Article  CAS  Google Scholar 

  21. L.Z. Mezey and J. Giber, Jpn. J. Appl. Phys. 21, 1569 (1982).

    Article  CAS  Google Scholar 

  22. H.W. Sheng, K. Lu, and E. Ma, Acta Mater. 46, 5195 (1998).

    Article  CAS  Google Scholar 

  23. H.W. Sheng, J. Xu, L.G. Yu, X.K. Sun, Z.Q. Hu, and K. Lu, J. Mater. Res. 11, 2841 (1996).

    Article  CAS  Google Scholar 

  24. H.W. Sheng, G. Ren, M. Peng, Z.Q. Hu, and K. Lu, Philos. Mag. Lett. 73, 179 (1996).

    Article  CAS  Google Scholar 

  25. S.J. Zinkle and E.H. Lee, Met. Trans. 21A, 1037 (1990).

    Article  CAS  Google Scholar 

  26. N. Ishikawa, M. Awaji, K. Furuya, R.C. Birtcher, and C.W. Allen, Nucl. Instrum. Methods B 127/128, 123 (1997).

    Article  CAS  Google Scholar 

  27. D.M. Follstaedt, Appl. Phys. Lett. 62, 1116 (1993).

    Article  CAS  Google Scholar 

  28. S.M. Myers and D.M. Follstaedt, J. Appl. Phys. 79, 1337 (1996).

    Article  CAS  Google Scholar 

  29. J. Wong-Leung, C.E. Ascheron, M. Petravic, R.G. Elliman, and J.S. Williams, Appl. Phys. Lett. 66, 1231 (1995).

    Article  CAS  Google Scholar 

  30. A. Meldrum, S.J. Zinkle, L.A. Boatner, and R.C. Ewing, Nature 395, 56 (1998).

    Article  CAS  Google Scholar 

  31. W.R. Wampler, S.M. Myers, and D.M. Follstaedt, Phys. Rev. B 48, 4492 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meldrum, A., Honda, S., White, C.W. et al. Nanocrystals in crystalline silicon: Void formation and hollow particles. Journal of Materials Research 16, 2670–2679 (2001). https://doi.org/10.1557/JMR.2001.0366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0366

Navigation