Skip to main content
Log in

The influence of the solubility limit on diffusion of as implants in silicon

  • Solids And Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Enhanced diffusion of implanted arsenic impurities in silicon during subsequent thermal annealing can be interpreted in terms of a system of reaction-diffusion equations. It is shown that for high doses the local solubility limit can considerably influence the reactions between the defects involved and thus markedly change the effective diffusion of As donors. A similar effect can be brought about by the presence of predoped donors/acceptors, which also can significantly accelerate/retard the effective diffusion of As implants. Furthermore, an explanation of some precipitation/clustering processes during a rapid/slow cooling-down is proposed. Finally, several “contradictory” experimental results published previously will be shown to be compatible with the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lindhard, M. Scharff, H.E. Schiøtt: Mat. Fys. Medd. Dan. Vid. Selsk. 33, No. 14 (1963)

  2. E. Antoncik: To be published in Rad. Eff. Def. Solids

  3. See e.g., A. Hunding, P.G. Sørensen: J. Math. Biol. 26, 27 (1988)

    Google Scholar 

  4. A.N. Larsen, S.Yu. Shiryaev, E.S. Sørensen, P. Tidemand-Petersson: Appl. Phys. Lett. 48, 1805 (1986)

    Google Scholar 

  5. S.Yu. Shiryaev, A.N. Larsen, E.S. Sørensen, P. Tidemand-Petersson: Nucl. Instrum. Methods B 19/20, (1987)

  6. A.N. Larsen, K.K. Larsen, P.E. Andersen, B.G. Svensson: To be published in J. Appl. Phys. (1992) and references therein

  7. A.N. Larsen, B. Christensen, S.Yu. Shiryaev: To be published in J. Appl. Phys. (1992)

  8. E. Antoncik: To be published in Rad. Eff. Def. Solids

  9. See e.g., P. Cappelletti, G.F. Cerofolini, G.U. Pignatel: Phil. Mag. A 46, 863 (1982)

    Google Scholar 

  10. A.N. Larsen, G. Weyer: Mater. Sci. Forum 83–87, 273 (1992)

    Google Scholar 

  11. In general, the use of an effective diffusion coefficient is subject to the condition that the system of reaction-diffusion equations, describing the interaction of various defects, can be reduced to a single effective diffusion equation simulating the diffusion of donors. If this cannot be done, the use of D eff is questionable

  12. P.E. Andersen, A.N. Larsen, P. Tidemand-Petersson, G. Weyer: Appl. Phys. Lett. 53, 755 (1988)

    Google Scholar 

  13. K.C. Pandey, A. Erbil, G.A. Cargil III, R. Boehme, D. Vanderbilt: Phys. Rev. Lett. 61, 1282 (1988). See also a very recent paper by J.L. Allain, J.R. Regnard, A. Bourret, A. Parisini, A. Armigliato, G. Tourillon, S. Pizzini: Phys. Rev. B 46, 9434 (1992)

    Google Scholar 

  14. M. Derdour, D. Nobili, S. Solmi: J. Electrochem. Soc. 138, 857 (1991)

    Google Scholar 

  15. R.B. Fair, J.J. Wortman, J. Liu: J. Electrochem Soc. 131, 2387 (1984)

    Google Scholar 

  16. R.T. Hodgson, V. Deline, S.M. Mader, F.F. Morehead, J. Gelpey: Mat. Res. Soc. Symp. Proc. 23, 253 (1984)

    Google Scholar 

  17. S.R. Wilson, W.M. Paulson, R.B. Gregory, A.H. Hamdi, F.D. McDaniel: J. Appl. Phys. 55, 4162 (1984)

    Google Scholar 

  18. J. Narayan, O.W. Holland: J. Appl. Phys. 56, 2913 (1984)

    Google Scholar 

  19. R. Kalish, T.O. Sedgwick, S. Mader, S. Shatas: Appl. Phys. Lett. 44, 107 (1984)

    Google Scholar 

  20. R. Kalish, G.S. Oehrlein, V.R. Deline, S.A. Cohen: Nucl. Instrum. Methods B 7/8, 329 (1985)

    Google Scholar 

  21. R. Kwor, D.L. Kwong, C.C. Ho, B.Y. Tsaur, S. Baumann: J. Electrochem. Soc. 132, 1201 (1985)

    Google Scholar 

  22. T.O. Sedwick, A.E. Michel, S.A. Cohen, V.R. Deline, G.S. Oehrlein: Appl. Phys. Lett. 47, 848 (1985)

    Google Scholar 

  23. T.E. Seidel, D.J. Lischner, C.S. Pai, R.V. Knoell, D.M. Maher, D.C. Jacobson: Nucl. Instrum. Methods B 7/8, 251 (1985)

    Google Scholar 

  24. J.L. Hoyt, J.F. Gibbons: Mat. Res. Soc. Symp. Proc. 52, 15 (1986)

    Google Scholar 

  25. M.J. Hart, A.G.R. Evans, G.A.J. Amaratunga: Mat. Res. Soc. Symp. Proc. 71, 429 (1986)

    Google Scholar 

  26. M.Z. Numan, Z.H. Lu, W.K. Chu, D. Fathy, J.J. Wortmann: Mat. Res. Soc. Symp. Proc. 52, 31 (1986)

    Google Scholar 

  27. C.C. Ho, R. Kwor, K. Jones, C. Araujo, J. Gelpey: Proc. Electrochem. Soc. 88-16, 117 (1988)

    Google Scholar 

  28. D.K. Sadana: Proc. Electrochem. Soc. 88-16, 147 (1988)

    Google Scholar 

  29. T. Inada, S. Wakabayashi, H. Iwasaki: J. Appl. Phys. 69, 6665 (1991)

    Google Scholar 

  30. D. Mathiot, J.C. Pfister: J. Appl. Phys. 66, 970 (1989)

    Google Scholar 

  31. R. Kögler, E. Wieser, G. Otto, P. Knothe: Appl. Phys. A 51, 53 (1990) and references therein

    Google Scholar 

  32. See e.g., E. Antoncik: To be published in Nucl. Instrum. Methods B (1993) and references therein

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoncik, E. The influence of the solubility limit on diffusion of as implants in silicon. Appl. Phys. A 56, 291–298 (1993). https://doi.org/10.1007/BF00324344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324344

PACS

Navigation