Skip to main content
Log in

Transformation behavior of yttria stabilized tetragonal zirconia polycrystal–TiB2 composites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The objective of the present article is to study the influence of TiB2 addition on the transformation behavior of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). A range of TZP(Y)–TiB2 composites with different zirconia starting powder grades and TiB2 phase contents (up to 50 vol%) were processed by the hot-pressing route. Thermal expansion data, as obtained by thermo-mechanical analysis were used to assess the ZrO2 phase transformation in the composites. The thermal expansion hysteresis of the transformable ceramics provides information concerning the transformation behavior in the temperature range of the martensitic transformation and the low-temperature degradation. Furthermore, the transformation behavior and susceptibility to low-temperature degradation during thermal cycling were characterized in terms of the overall amount and distribution of the yttria stabilizer, zirconia grain size, possible dissolution of TiB2 phase, and the amount of residual stress generated in the Y-TZP matrix due to the addition of titanium diboride particles. For the first time, it is demonstrated in the present work that the thermally induced phase transformation of tetragonal zirconia in the Y-TZP composites can be controlled by the intentional addition of the monoclinic zirconia particles into the 3Y-TZP matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Kisi and C.J. Howard, Key Eng. Mater. 153–154, 1 (1998).

    Article  Google Scholar 

  2. R.H.J. Hannink, P.M. Kelly, and B.C. Muddle, J. Am. Ceram. Soc. 83, 461 (2000).

    Article  CAS  Google Scholar 

  3. B. Basu, L. Donzel, J. Van Humbeeck, J. Vleugels, R. Schaller, and O. Van Der Biest, Scripta Mater., 40, 759 (1999).

    Article  CAS  Google Scholar 

  4. M. Rühle and A.G. Evans, Prog. Mater. Sci. 33, 85 (1989).

    Article  Google Scholar 

  5. A.G. Evans, J. Am. Ceram. Soc. 73, 187 (1990).

    Article  CAS  Google Scholar 

  6. R.M. Mcmeeking and A.G. Evans, J. Am. Ceram. Soc. 65, 242 (1982).

    Article  Google Scholar 

  7. R.C. Garvie, R.H. Hannink, and R.T. Pascoe, Nature 258, 703 (1975).

    Article  CAS  Google Scholar 

  8. B-T. Lee, K-H. Lee, and K. Hiraga, Scripta Mater. 38, 1101 (1998).

    Article  CAS  Google Scholar 

  9. R. Telle and G. Petzow, Mater. Sci. Eng. A 105/106, 97 (1988); T. Watanabe and K. Shorbu, J. Am. Ceram. Soc. 68, C34 (1985).

  10. J. Vleugels and O. Van Der Biest, J. Am. Ceram. Soc. 82, 2717 (1999).

    Article  CAS  Google Scholar 

  11. S. Lawson, J. Eur. Ceram. Soc. 15, 485 (1995).

    Article  CAS  Google Scholar 

  12. B. Basu, J. Vleugels, and O. Van Der Biest, Mat. Sc. Engg. A (submitted).

  13. B. Basu, J. Vleugels, and O. Van Der Biest J. Matls. Sci. (submitted).

  14. H. Schubert, J. Am. Ceram. Soc. 69, 270 (1986).

    Article  CAS  Google Scholar 

  15. M. Johnsson and L. Eriksson, Z. Metallkd. 89, 478 (1998).

    CAS  Google Scholar 

  16. N. Ramakrishnan, H. Okada, and S.N. Atluri, Acta Mater. 39, 1297 (1991).

    Article  CAS  Google Scholar 

  17. M. Taya, S. Hayashi, A.S. Kobayashi, and H.S. Yoon, J. Am. Ceram. Soc. 73, 1382 (1990).

    Article  CAS  Google Scholar 

  18. V. Sergo, G. Pezzotti, O. Sbaizero, and T. Nishida, Acta Mater. 46, 1701 (1998).

    Article  CAS  Google Scholar 

  19. M-J. Pan, D.J. Green, and J.R. Hellmann, Scripta Mater. 36, 1095 (1997).

    Article  CAS  Google Scholar 

  20. G.D. Portu and S. Conoci, J. Am. Ceram. Soc. 80, 3242 (1997).

    Article  Google Scholar 

  21. S. Stemmer, J. Vleugels, and O. Van Der Biest, J. Eur. Ceram. Soc. 18, 1565 (1998).

    Article  CAS  Google Scholar 

  22. S. Stemmer, J. Vleugels, and O. Van Der Biest, in Interfacial Engineering for Optimized Properties, edited by C.L. Briant, C.B. Carter, and E.L. Hall (Mater. Res. Soc. Proc. 458, Pittsburgh, PA, 1997), pp. 133–138.

  23. J.L. Shi, Z.L. Lu, and J.K. Guo, J. Mater. Res. 15, 727 (2000).

    Article  CAS  Google Scholar 

  24. B. Basu, J. Vleugels, and O. Van Der Biest J. Europ. Ceram. Soc. (submitted).

  25. A. Kulpa and T. Troczynski, J. Am. Ceram. Soc. 79, 518 (1996).

    Article  CAS  Google Scholar 

  26. B. Basu, Ph.D. Thesis, Katholieke Universiteit Leuven, Belgium (2001).

  27. C L. Lin, D. Gan, and P. Shen, Mater. Sci. Eng. A, A129, 147 (1990).

    Article  CAS  Google Scholar 

  28. D-J. Kim, J-W. Jang, and H-L. Lee, J. Am. Ceram. Soc. 80, 1453 (1997).

    Article  CAS  Google Scholar 

  29. R.H.J. Hannink and B.C. Muddle, Mater. Sci. Forum 34–36, 543 (1988).

    Google Scholar 

  30. C-S. Hwang, S-C. Tsaur, and Y-J. Chang, J. Ceram. Soc. Jpn. 102, 1111 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, B., Vleugels, J. & Van Der Biest, O. Transformation behavior of yttria stabilized tetragonal zirconia polycrystal–TiB2 composites. Journal of Materials Research 16, 2158–2169 (2001). https://doi.org/10.1557/JMR.2001.0294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0294

Navigation