Skip to main content

Advertisement

Log in

Mechanical properties and low temperature degradation (LTD) of cation-stabilized zirconia

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The investigation to improve the mechanical properties and aging resistance of ZrO2 had been carried out through powder metallurgy methods. Doping 1, 3, 4, 5 mol% CeO2, HfO2, TiO2, Y2O3 with ZrO2 powder (tetragonal zirconia polycrystal, TZP), all simples were sintered at 1500 ℃-2 h to test the relative density. All sintered specimens presented nearly full densification. 5Ti-TZP promoted a significant increase in grain size. The fracture toughness of 5Ti-TZP was higher than other counterparts, which was 7.5 MPa·m1/2. HfO2 enhanced the bending strength, which was 1027 MPa. Ce-TZP presented average values of Vickers hardness and fracture toughness of 1141 kg/mm2, 4.5 MPa·m1/2, respectively. Hf-TZP and Ti-TZP presented 80% of monoclinic ZrO2 after a 20-h accelerated aging process while 5Ce-TZP withheld 80% of tetragonal ZrO2. 5Ce-TZP had the same resistance to hydrothermal aging as 3Y-TZP, which was 20% monoclinic phase after aging, but its mechanical properties are better.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E. Camposilvan, R. Leone, L. Gremillard, R. Sorrentino, F. Zarone, M. Ferrari, J. Chevalier, Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications. Dent. Mater. (2018). https://doi.org/10.1016/j.dental.2018.03.006

    Article  Google Scholar 

  2. J. Chevalier, L. Gremillard, A.V. Virkar, D.R. Clarke, The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901–1920 (2009). https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  CAS  Google Scholar 

  3. I.G. Tredici, M. Sebastiani, F. Massimi, E. Bemporad, A. Resmini, G. Merlati, U. Anselmi-Tamburini, Low temperature degradation resistant nanostructured yttria-stabilized zirconia for dental applications. Ceram. Int. 42, 8190–8197 (2016)

    Article  CAS  Google Scholar 

  4. R.H. De Souza, M.R. Kaizer, C.E.P. Borges, A.B.F. Fernandes, G.M. Correr, A.N. Diógenes, Y. Zhang, C.C. Gonzaga, Flexural strength and crystalline stability of a monolithic translucent zirconia subjected to grinding, polishing and thermal challenges. Ceram. Int. 46, 26168–26175 (2020)

    Article  Google Scholar 

  5. S. Ramesh, K.Y.S. Lee, C.Y. Tan, A review on the hydrothermal ageing behaviour of Y-TZP ceramics. J. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.216

    Article  Google Scholar 

  6. T.J. Lucas, N.C. Lawson, G.M. Janowski, J.O. Burgess, Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia. Dent. Mater. 31, 1487–1492 (2015)

    Article  CAS  Google Scholar 

  7. F. Zhang, M. Batuk, J. Hadermann, G. Manfredi, A. Mariën, K. Vanmeensel, M. Inokoshi, B. Van Meerbeek, I. Naert, J.J.A.M. Vleugels, Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Mater 106, 48–58 (2016)

    Article  CAS  Google Scholar 

  8. Z.K. Wu, N. Li, J.Z. Yan, W.Q. Zhao, Effect of Al2O3 coating on densification and aging sensibility of 3Y-TZP ceramics. Rare Metal Mater. Eng. 44, 808–812 (2015). https://doi.org/10.1016/S1875-5372(15)30052-7

    Article  CAS  Google Scholar 

  9. Z.K. Wu, N. Li, C. Jian, W.Q. Zhao, J.Z. Yan, Low temperature degradation of Al2O3-doped 3Y-TZP sintered at various temperatures. Ceram. Int. 39, 7199–7204 (2013). https://doi.org/10.1016/j.ceramint.2013.02.065

    Article  CAS  Google Scholar 

  10. F. Zhang, K. Vanmeensel, M. Inokoshi, M. Batuk, J. Hadermann, B. Van Meerbeek, I. Naert, J. Vleugels, Critical influence of alumina content on the low temperature degradation of 2–3 mol% yttria-stabilized TZP for dental restorations. J. Eur. Ceram. Soc. 35, 741–750 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.018

    Article  CAS  Google Scholar 

  11. A. Samodurova, A. Kocjan, M.V. Swain, T.J.A.b. Kosmač, The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomater. 11, 477–487 (2015)

    Article  CAS  Google Scholar 

  12. M.P. Albano, H.L.C. Pulgarin, L.B. Garrido, E.P. Ferraz, A.L. Rosa, P.T. de Oliveira, Effect of ZrO2 content on ageing resistance and osteogenic cell differentiation of ZrO2–Al2O3 composite. Ceram. Int. 42, 11363–11372 (2016). https://doi.org/10.1016/j.ceramint.2015.07.047

    Article  CAS  Google Scholar 

  13. S. Ramesh, C.K. Ng, C.Y. Tan, W.H. Wong, C.Y. Ching, A. Muchtar, M.R. Somalu, S. Ramesh, H. Chandran, P. Devaraj, Effects of sintering on the mechanical and ionic properties of ceria-doped scandia stabilized zirconia ceramic. Ceram. Int. 42, 14469–74 (2016)

    Article  CAS  Google Scholar 

  14. G.K.R. Pereira, C. Muller, V.F. Wandscher, M.P. Rippe, C.J. Kleverlaan, L.F. Valandro, Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. J. Mech. Behav. Biomed. Mater. 60, 324–330 (2016). https://doi.org/10.1016/j.jmbbm.2016.02.017

    Article  CAS  Google Scholar 

  15. R.S.F. Pereira, C.G. Moura, B. Henriques, J. Chevalier, F.S. Silva, M.C. Fredel, Improvement of 3Y-TZP aging behavior by means of zirconia-based protective layers. J. Eur. Ceram. Soc. 40, 4315–4322 (2020)

    Article  CAS  Google Scholar 

  16. R. Maurya, A. Gupta, S. Omar, K. Balani, Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceram. Int. 42, 11393–11403 (2016)

    Article  CAS  Google Scholar 

  17. S. Ban, H. Sato, Y. Suehiro, H. Nakanishi, M. Nawa, Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J. Biomed. Mater. Res. Part B 87, 492–498 (2008)

    Article  Google Scholar 

  18. A.Z.A. Azhar, S.H. Mohamad Shawal, H. Manshor, A.M. Ali, N.A. Rejab, E.C. Abdullah, Z.A. Ahmad, The effects of CeO2 addition on the physical and microstructural properties of ZTA-TiO2 ceramics composite. J. Alloys Compd. 773, 27–33 (2019)

    Article  CAS  Google Scholar 

  19. S. Bejugama, S. Chameettachal, F. Pati, A.K. Pandey, In vitro cellular response and hydrothermal aging of two-step sintered Nb2O5 doped ceria stabilized zirconia ceramics. Ceram. Int. 47, 1594–1601 (2021)

    Article  CAS  Google Scholar 

  20. S. Bejugama, N.K. Gadwal, A.K. Pandey, Two-step sintering of Sm2O3 doped ceria stabilized zirconia. Ceram. Int. 45, 10348–10355 (2019)

    Article  CAS  Google Scholar 

  21. S. Bejugama, S. Chameettachal, F. Pati, A.K. Pandey, Tribology and in-vitro biological characterization of samaria doped ceria stabilized zirconia ceramics. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.03.076

    Article  Google Scholar 

  22. E. Willems, F. Zhang, B. Van Meerbeek, J. Vleugels, Iron oxide colouring of highly-translucent 3Y-TZP ceramics for dental restorations. J. Eur. Ceram. Soc. 39, 499–507 (2019)

    Article  CAS  Google Scholar 

  23. A. Leriche, F. Cambier, H. Reveron, Zirconia ceramics, structure and properties, reference module in materials science and materials engineering. J. Eur. Ceram. Soc. (2021). https://doi.org/10.1016/j.jeurceramsoc.2018.09.043

    Article  Google Scholar 

  24. L. Hallmann, P. Ulmer, E. Reusser, M. Louvel, C.H. Hämmerle, Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. J. Eur. Ceram. Soc. 32, 4091–4104 (2012)

    Article  CAS  Google Scholar 

  25. H. Yang, Y. Ji, Low-temperature degradation of zirconia-based all-ceramic crowns materials: a mini review and outlook. J. Mater. Sci. Technol. 32, 593–596 (2016)

    Article  Google Scholar 

  26. Y. Takigawa, Y. Naka, K. Higashi, Effect of Titania doping on phase stability of zirconia bioceramics in hot water. Mater. Trans. 48(332), 336 (2007)

    Google Scholar 

  27. R.S. Uwanyuze, S. Ramesh, M.K. King, N. Lawson, M.K. Mahapatra, Mechanical properties, translucency, and low temperature degradation (LTD) of yttria (3–6 mol%) stabilized zirconia. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.02.161

    Article  Google Scholar 

  28. F. Zhang, K. Vanmeensel, M. Batuk, J. Hadermann, M. Inokoshi, B. Van Meerbeek, I. Naert, J.J. Vleugels, Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomater. 16, 215–222 (2015). https://doi.org/10.1016/j.actbio.2015.01.037

    Article  CAS  Google Scholar 

  29. G. Azimi, R. Dhiman, H.M. Kwon, A.T. Paxson, K.K. Varanasi, Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013)

    Article  CAS  Google Scholar 

  30. F.G. Marro, J. Valle, A. Mestra, M. Anglada, Surface modification of 3Y-TZP with cerium oxide. J. Eur. Ceram. Soc. 31, 331–338 (2011)

    Article  CAS  Google Scholar 

  31. B. Stawarczyk, C. Keul, M. Eichberger, D. Figge, N. Lümkemann, Three generations of zirconia: from veneered to monolithic. Part I. Quintessence Int. 48, 369–380 (2017). https://doi.org/10.3290/j.qi.a38057

    Article  Google Scholar 

  32. S.M. Fathy, W. Al-Zordk, M.E. Grawish, M.V. Swain, Flexural strength and translucency characterization of aesthetic monolithic zirconia and relevance to clinical indications: a systematic review. Dent. Mater. 37, 711–730 (2021)

    Article  CAS  Google Scholar 

  33. J. Chevalier, S. Deville, E. Münch, R. Jullian, F. Lair, Critical effect of cubic phase on aging in 3 mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials 25, 5539–5545 (2004)

    Article  CAS  Google Scholar 

  34. H. Yang, Y.-L. Xu, G. Hong, H. Yu, Effects of low-temperature degradation on the surface roughness of yttria-stabilized tetragonal zirconia polycrystal ceramics: a systematic review and meta-analysis. J. Prosthet. Dent. 125, 222–230 (2021)

    Article  CAS  Google Scholar 

  35. C.D. Santos, I.F. Coutinho, J.E.V. Amarante, M.F.R.P. Alves, M.M. Coutinho, C.R. Moreira da Silva, Mechanical properties of ceramic composites based on ZrO2 co-stabilized by Y2O3–CeO2 reinforced with Al2O3 platelets for dental implants. J. Mech. Behav. Biomed. Mater. 116, 104372 (2021)

    Article  CAS  Google Scholar 

  36. P. Li, I-W. Chen, E. James, P. Hahn, Effect of dopants on zirconia stabilization—an X-ray absorption study: I, Trivalent dopants. J. Am. Ceram. Soc. 77, 118–128 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb06964.x

    Article  CAS  Google Scholar 

  37. G. Steffen, Defect interactions in the CeO2–ZrO2–Y2O3 solid solution. J. Phys. Chem. C 121(28), 15078–15084 (2017). https://doi.org/10.1021/acs.jpcc.7b03507

    Article  CAS  Google Scholar 

  38. D. Tian, C. Zeng, H. Wang, H. Luo, X. Cheng, C. Xiang, Y. Wei, K. Li, X. Zhu, Performance of cubic ZrO2 doped CeO2: first-principles investigation on elastic, electronic and optical properties of Ce1− x ZrxO2. J. Alloy. Compd. 671, 208–219 (2016)

    Article  CAS  Google Scholar 

  39. R.G. Sahar, K. Matiullah, Z. Yi, M. Lin, W. Bo, T. Chi-Tay, Electronic band structure variations in the ceria doped zirconia: a first principles study. Materials (Basel) 11, 1238 (2018). https://doi.org/10.3390/ma11071238

    Article  CAS  Google Scholar 

  40. https://www.tosoh.com/our-products/advanced-materials/zirconia-powders

  41. K. Niihara, R. Morena, D.J.J.o.M.S.L. Hasselman, Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios. J. Mater. Sci. Lett. 1, 13–16 (1982)

    Article  CAS  Google Scholar 

  42. H. Toraya, M. Yoshimura, S.J.J.o.t.A.C.S. Somiya, Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. J. Am. Ceram. Soc. 67(C119), C121 (1984)

    Google Scholar 

Download references

Funding

This work was supported by Beijing Municipal Natural Science Foundation (Grant No. 2212042), National Natural Science Foundation of China (Grant No. U2141205, 52271019), Fundamental Research Funds for the Central Universities (FRF-BD-22-03). Natural Science Foundation of Hebei Province (E2022402004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yin, H., Zhang, R. et al. Mechanical properties and low temperature degradation (LTD) of cation-stabilized zirconia. Journal of Materials Research 38, 3383–3394 (2023). https://doi.org/10.1557/s43578-023-01064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01064-z

Navigation