Skip to main content
Log in

Energetics of oxidation of oxynitrides: Zr–N–O, Y–Zr–N–O, Ca–Zr–N–O, and Mg–Zr–N–O

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The enthalpies of oxidation, δHox, of oxynitrides YyZr1−yO2x−0.5y−2/3xNx (0.016 < x < 0.2), CayZr1−yO2xy−2/3xNx (0.03 < x < 0.14), MgyZr1−yO2xy−2/3xNx (0.146 < x < 0.28), and Zr–O–N (β-type and γ phases) are measured using drop solution calorimetry in molten sodium molybdate (3Na2O · 4MoO3) at 973 K. Linear relations between the enthalpy δHox and nitrogen content were found in all oxynitrides. They indicate that, within the experimental range of nitrogen concentrations, sites occupied by nitrogen ions are energetically equivalent in a given substitutional series. The enthalpies normalized per mole of nitrogen, δHnox, for compounds of Y–Zr–N–O, Ca–Zr–N–O, and Zr–N–O are similar, about −500 kJ/(mol of N). A more exothermic value of δHnox, of about −950 kJ/(mol of N), is seen in Mg–Zr–N–O compounds. The energetics of vacancy formation in zirconium oxynitrides was determined and compared to the energetics of vacancy formation in yttria- and calcia-stabilized zirconia. The enthalpy of vacancy formation (enthalpy of formation relative to end members normalized per vacancy) in zirconium oxynitrides (−190.5 ± 27.0 kJ/mol of Vö) is more exothermic than that in yttria- and calcia-stabilized zirconia (−105 ± 7.2 and −91.4 ± 3.8 kJ/mol of Vö, respectively). This is consistent with the higher tendency for long-range ordering in zirconium oxynitrides compared to stabilized zirconia. Some technological implications of the results are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lerch, J. Am. Ceram. Soc. 10, 2641 (1996).

    Google Scholar 

  2. Y-B. Cheng and D. Thompson, J. Am. Ceram. Soc. 76(3), 683 (1993).

    Article  CAS  Google Scholar 

  3. R. Collongues, J.C. Gilles, A.M. Lejus, and M. Perez y Jorba, Mater. Res. Bull. 2, 837 (1967).

    Article  CAS  Google Scholar 

  4. M. Lerch, J. Mater. Sci. Lett. 17, 441 (1998).

    Article  CAS  Google Scholar 

  5. I.W. Boyd, Laser Processing of Thin Films and Microstructures (Springer Series in Materials Science, Berlin, Germany, 1987), Vol. 3.

    Book  Google Scholar 

  6. I. Ursu, N. Mihailescu, L.C. Nistor, and V.S. Teodorescu, J. Appl. Phys. 66, 3682 (1989).

    Article  CAS  Google Scholar 

  7. P. Prieto, L. Galan, and J.M. Sanz, Surf. Interface Anal. 21, 395 (1994).

    Article  CAS  Google Scholar 

  8. R.T. Meyer and L.S. Nelson, High Temp. Sci. 2, 35 (1970).

    CAS  Google Scholar 

  9. L.S. Nelson, D.E. Rosner, S.C. Kurzius, and H.S. Levine, Twelfth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1968), pp. 59–70.

    Google Scholar 

  10. I.E. Molodetsky, E.L. Dreizin, and C.K. Law, Twenty Sixth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA, 1996), pp. 1919–1927.

    Google Scholar 

  11. M. Rühle, A. Strecker, and D. Waidelich, in Science and Technology of Zirconia, edited by N. Clausses, M. Ruhle, and A.H. Heuer (Advances in Ceramics, Vol. 12, II, Am. Ceram. Soc. Columbus, OH, 1984), pp. 256–274.

  12. S. Dutta and B. Buzek, J. Am. Ceram. Soc. 67, 89 (1984).

    Article  CAS  Google Scholar 

  13. V.S. Stubican, G.S. Corman, J.R. Hellmann, and G. Senft, in Science and Technology of Zirconia, edited by N. Clausses, M. Ruhle, and A.H. Heuer (Advances in Ceramics, Vol. 12, II, Am. Ceram. Soc. Columbus, OH, 1984), p. 96.

    Google Scholar 

  14. S.P.S. Badwal, Solid State Ionics 8, 23 (1992).

    Article  Google Scholar 

  15. M. Lerch and O. Rahauser, J. Mater. Sci. 32, 1357 (1997).

    Article  CAS  Google Scholar 

  16. F.F. Lange, L.K.L. Falk, and B.I. Davis, J. Mater. Res. 2, 66 (1987).

    Article  CAS  Google Scholar 

  17. Y. Yin, A.W. Bryant, and B.B. Argent, Mater. Sci. Technol. 12, 117 (1996).

    Article  CAS  Google Scholar 

  18. I. Molodetsky, A. Navrotsky, M. Lajavardi, and A. Brune, Z. Phys. Chem. 207, 59 (1998).

    Article  CAS  Google Scholar 

  19. A. Navrotsky, Phys. Chem. Miner. 24, 222 (1997).

    Article  CAS  Google Scholar 

  20. M. Lerch, J. Lerch, J.R. Hock, and J. Wrba, J. Solid State Chem. 128, 282 (1997).

    Article  CAS  Google Scholar 

  21. M. Ohashi, H. Yamamoto, S. Yamanaka, and M. Hatori, Mater. Res. Bull. 28, 513 (1993).

    Article  CAS  Google Scholar 

  22. M. Ohashi, S. Yamanaka, and M. Hattori, J. Solid State Chem. 77, 342 (1988).

    Article  CAS  Google Scholar 

  23. M. Ohashi, S. Yamanaka, M. Sumihara, and M. Hattori, J. Solid State Chem. 75, 99 (1988).

    Article  CAS  Google Scholar 

  24. R.C. Garvie and P.S. Nicholson, J. Am. Ceram. Soc. 55, 303 (1972).

    Article  CAS  Google Scholar 

  25. J.M. McHale, G.R. Kowach, A. Navrotsky, and F.J. DiSalvo, Chem. Eur. J. 2, 1514 (1996).

    Article  CAS  Google Scholar 

  26. M.G. Cain and M.H. Lewis, J. Am. Ceram. Soc. 76, 6 (1993).

    Article  Google Scholar 

  27. M.W. Chase and C.A. Davies, JANAF thermochemical tables, 3rd ed., J. Phys. Chem. Ref. Data (1985).

  28. I. Barin and O. Knacke, Thermochemical properties of inorganic substances (Springer-Verlag, Berlin, Germany/Heidelberg, Germany/New York, 1973).

    Google Scholar 

  29. E. Takayama-Muromachi and A. Navrotsky, J. Solid State Chem. 72, 244 (1988).

    Article  CAS  Google Scholar 

  30. J-J. Liang, A. Navrotsky, T. Ludwig, H.J. Seifert, and F. Aldinger, J. Mater. Res. 14, 4 (1999).

    Google Scholar 

  31. M. Lerch, E. Füglein, and J. Wrba, Z. Anorg. Allg. Chem. 622, 367 (1996).

    Article  CAS  Google Scholar 

  32. I. Molodetsky, Ph.D. Thesis, Princeton University (1999).

  33. C.R.A. Catlow, A.V. Chadwick, G.N. Greaves, and L.M. Moroney, J. Am. Ceram. Soc. 69, 272 (1986).

    Article  CAS  Google Scholar 

  34. P. Li, J. Chen, and J. Penner-Hahn, J. Am. Ceram. Soc. 77, 118 (1994).

    Article  CAS  Google Scholar 

  35. H.G. Scott, Acta Crystallogr. B 33, 281 (1977).

    Article  Google Scholar 

  36. M.R. Thornber, D.J.M. Bevan, and J. Graham, Acta Crystallogr. B 24, 1183 (1968).

    Article  CAS  Google Scholar 

  37. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University, Ithaca, NY, 1960).

    Google Scholar 

  38. D.H. Cho, D.R. Armstrong, and R.P. Anderson, Nucl. Eng. Des. 155, 405 (1995).

    Article  CAS  Google Scholar 

  39. E.L. Dreizin, Prog. Energy Combust. Sci. 26, 5778 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Navrotsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molodetsky, I., Navrotsky, A., DiSalvo, F. et al. Energetics of oxidation of oxynitrides: Zr–N–O, Y–Zr–N–O, Ca–Zr–N–O, and Mg–Zr–N–O. Journal of Materials Research 15, 2558–2570 (2000). https://doi.org/10.1557/JMR.2000.0366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0366

Navigation