Skip to main content
Log in

The oxidation of the uranium(IV)tetrachloride by the octacyanotungstate(V) and the octacyanomolybdate(V) ions in perchloric acid medium: A kinetic study

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The oxidation of the uranium tetrachloride (UCl4) by the octacyanometalate(V) ion of tungsten and molybdenum was studied in a perchloric acid medium at an ionic strength of 1.5 M (NaClO4). The reaction was first order in both UIV(H2O)84+ and MV(CN)83– (M = W, Mo). A second order rate constant of k2 = 0.111 ± 0.002 M−1s−1 at [H+] = 0.932 M and 15.0 °C was found for the W(CN)83– reaction and for the Mo(CN)83– reaction, k2 = 32.9 ± 0.9 M−1s−1 at [H+] = 1.008 M and 29.7 °C. The reactions are proportional to [H+]–2 and an equilibrium constant of Ka2 ≈ 1.18 × 10−3 M−1 (pKa ≈ 6.7) at µ = 1.5 M was found for the deprotonation of UIV(H2O)84+. Activation parameters have been obtained by a least squares fit of temperature data directly to the Eyring equation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Newton TW, Baker FB (1967) Aqueous oxidation-reduction reactions of uranium, neptunium, plutonium, and americium. Lanthanide/Actinide Chem 20:268–295

    Article  Google Scholar 

  2. (1964) Kompleksnye soedineniya urana, Akademiya nauk SSSR, Institut obschei i neorganicheskoi kimii (Complex uranium compounds, Academy of sciences of the USSR, Institute of general and inorganic chemistry) ed Bolotova GT and Golovnya VA, Chapter 19

  3. Kraus KA, Nelson F (1950) Hydrolytic behavior of metal ions. I. The acid constants of uranium(IV) and plutonium(IV). J Am Chem Soc 72:3901–3906

    Article  CAS  Google Scholar 

  4. Kraus KA, Nelson F (1955) Hydrolytic behavior of metal ions. IV. The acid constant of uranium(IV) as a function of temperature. J Am Chem Soc 77:3721–3722

    Article  CAS  Google Scholar 

  5. Betts RH (1955) Kinetics of the oxidation of uranium (IV) by iron (III) in aqueous solutions of perchloric acid. Can J Chem 33:1780–1791

    Article  CAS  Google Scholar 

  6. Halpern J, Smith JG (1956) Kinetics of the oxidation of uranium (IV) by molecular oxygen in aqueous perchloric acid solution. Can J Chem 34:1419–1427

    Article  CAS  Google Scholar 

  7. Newton TW (1959) The kinetics of the reaction between Pu (IV) and U (IV). J Phys Chem 63:1493–1497

    Article  CAS  Google Scholar 

  8. Harkness AC, Halpern J (1959) Kinetics of the oxidation of uranium(IV) by thallium(III). J Am Chem Soc 81:3526–3529

    Article  CAS  Google Scholar 

  9. Baker FB, Newton TW, Kahn M (1960) The kinetics of the reaction between uranium(IV) and cerium(IV). J Phys Chem 64:109–112

    Article  CAS  Google Scholar 

  10. Baker FB, Newton TW (1961) The reaction between uranium(IV) and hydrogen peroxide. J Phys Chem 65:1897–1899

    Article  CAS  Google Scholar 

  11. Hassan RM, Mousa MA, El-Shatovry SA (1988) Kinetics of oxidation of uranium(IV) by permanganate ion in aqueous perchlorate media. J Chem Soc Dalton Trans. https://doi.org/10.1039/dt9880000601

    Article  Google Scholar 

  12. Hassan RM (2011) A mechanistic approach of the kinetics of oxidation of uranium(IV) by hexachloroplatinate(IV) in aqueous perchorate solutions. Evidence of the formation of a binuclear intermediate complex. J Phys Chem A 115:13338–13345

    Article  CAS  PubMed  Google Scholar 

  13. Hassan RM, Kojima T, Fukotumi H (1980) Kinetic study of the oxidation of uranium(IV) by ferricyanide ions in aqueous solutions. Bull Res Lab Nucl React Jpn 12:41–47

    Google Scholar 

  14. Hassan RM (1991) Kinetics of reaction of uranium(IV) and hexachloroiridate(IV) in acid perchlorate solutions. Evidence for a binuclear intermediate. J Chem Soc Dalton Trans. https://doi.org/10.1039/dt9910003003

    Article  Google Scholar 

  15. Dennis CR, Van Zyl GJ, Fourie E, Basson SS, Swarts JC (2021) A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the hexacyanoferrate(III) ion in an oxalate buffer medium. Reac Kinet Mech Cat 132:599–615

    Article  CAS  Google Scholar 

  16. Dennis CR, Van Zyl GJ, Fourie E, Basson SS, Swarts JC (2021) A kinetic study of the oxidation of the tetrakisoxalatouranate(IV) ion by the octacyanotungstate(V) and the octacyanomolybdate(V) ions in an acidic oxalate buffer medium. Reac Kinet Mech Cat 134:615–627

    Article  CAS  Google Scholar 

  17. Leipoldt JG, Bok LDC, Cilliers PJ (1974) The preparation of potassium octacyanotungstate(IV) dihydrate. Z Anog Allg Chem 407:350–352

    Article  CAS  Google Scholar 

  18. Leipoldt JG, Bok LDC, Cilliers PJ (1974) The preparation of potassium octacyanomolybdate(IV) dihydrate. Z Anog Allg Chem 409:343–344

    Article  CAS  Google Scholar 

  19. Dennis CR, Van Wyk AJ, Basson SS, Leipoldt JG (1992) Synthesis of cesium octacyanomolybdate(V)- and cesium octacyanotungstate(V) dihydrate: a more successful method. Transition Met Chem 17:471–473

    Article  CAS  Google Scholar 

  20. Konig E (1962) Interpretation der absorptionsspektren der komplexionen [Mo(CN)8]4−, [Mo(CN)8]3−, [W(CN)8]4− und [W(CN)8]3−. Theoret Chim Acta 1:23–35

    Article  Google Scholar 

  21. Perumareddi JR, Liehr AD, Adamson AW (1963) Ligand field theory of transition metal cyanide complexes. Part I. The zero, one and two electron or hole configurations. J Am Chem Soc 85:249–259

    Article  CAS  Google Scholar 

  22. McGarvey BR (1966) The structure of the octacyanomolybdate(V) and -tungstate(V) ions from electron spin resonance. Inorg Chem 5:476–479

    Article  CAS  Google Scholar 

  23. Hayes RG (1966) EPR Studies of the Mo(CN)83— and W(CN)83— ions. The geometry of the ions. J Chem Phys 44:2210–2212

    Article  CAS  Google Scholar 

  24. Adamson AW, Welker JP, Volpe M (1950) Exchange studies with complex ions. I. The exchange of radiocyanide with certain heavy metal complex cyanides. J Am Chem Soc 72:4030–4036

    Article  CAS  Google Scholar 

  25. Dennis CR, Fourie E, Margerum DW, Swarts JC (2020) Kinetic advantage of inner sphere electron transfer reactions of copper(III, II) peptide complexes with cyano complexes of iron, molybdenum and tungsten. Transit Met Chem 45:147–157

    Article  CAS  Google Scholar 

  26. Dennis CR, Margerum DW, Fourie E, Swarts JC (2020) A kinetic study of the electron-transfer reactions of nickel (III, II) tripeptide complexes with cyano complexes of molybdenum, tungsten and iron. Inorg Chem 59:11695–11703

    Article  CAS  PubMed  Google Scholar 

  27. Leipoldt JG, Bok LDC, Dennis CR (1976) A kinetic study of the octacyanomolybdate(V) ion oxidation of arsenite in an alkaline medium. J Inorg Nucl Chem 38:1655–1657

    Article  CAS  Google Scholar 

  28. Leipoldt JG, Bok LDC, Van Wyk AJ, Dennis CR (1977) A kinetic study of the octacyanotungstate(V) ion oxidation of arsenite in an alkalide medium. J Inorg Nucl Chem 39:2019–2020

    Article  CAS  Google Scholar 

  29. Leipoldt JG, Bok LDC, Van Wyk AJ, Dennis CR (1977) A kinetic study of the reduction of the octacyanomolybdate(V) and octacyanotungstate(V) ions by hydrazine in an alkaline medium. React Kinet Catal Lett 6:467–474

    Article  CAS  Google Scholar 

  30. Leipoldt JG, Dennis CR, Van Wyk AJ, Bok LDC (1978) A kinetic study of the osmium(Vlll) catalyzed reduction of octacyanomolyb-date(V) and octacyanotungstate(V) ions by selenium(IV) in an alkaline medium. Inor Chim Acta 31:187–190

    Article  CAS  Google Scholar 

  31. Leipoldt JG, Bok LDC, Basson SS, Van Wyk AJ, Dennis CR, Cilliers PJ (1977) A kinetic study of the oxidation of thiourea by octacyanomolybdate(V) and octacyanotungstate(V) ions in an alkaline medium. React Kinet Catal Lett 8:93–99

    Article  Google Scholar 

  32. Leipoldt JG, Dennis CR, Van Wyk AJ, Bok LDC (1979) A kinetic study of the Os(VIII) catalyzed oxidation of tellurium(IV) by octacyanomolybdate(V) and octacyanotungstate(V) ions in an alkaline medium. Inorg Chim Acta 34:237–240

    Article  CAS  Google Scholar 

  33. Lamprect GJ, Leipoldt JG, Dennis CR, Basson SS (1980) Kinetics of the octacyanomolybdate(V) ion oxidation of thiosulphate. React Kinet Catal Lett 13:269–275

    Article  Google Scholar 

  34. Leipoldt JG, Dennis CR, Grobler EC (1983) Kinetics of the oxidation of the manganate ion by complex cyanides of Mo (V), W(V) and Fe (III) in alkaline solution. Inorg Chim Acta 77:L45–L46

    Article  CAS  Google Scholar 

  35. Dennis CR, Basson SS, Leipoldt JG (1983) Kinetics and salt effects of the reduction of octacyanomolybdate(V) and octacyanotungstate(V) by sulphite ions. Polyhedron 2:1357–1362

    Article  CAS  Google Scholar 

  36. Dennis CR, Leipoldt JG, Basson SS, Lamprecht GJ (1985) The oxidation of thiosulphate ions by octacyanotungstate(V) in weak acidic medium. Polyhedron 4:1621–1624

    Article  CAS  Google Scholar 

  37. Dennis CR, Van Wyk AJ, Basson SS, Leipoldt JG (1987) Oxidation of hydrazine and methyl-substituted hydrazines by the cyano complexes of iron(III), molybdenum(V) and tungsten(V). A kinetic study. Inorg Chem 26:270–272

    Article  CAS  Google Scholar 

  38. Van Wyk AJ, Dennis CR, Leipoldt JG, Basson SS (1987) A kinetic study of the oxidation of hydroxylamine by octacyanotungstate(V). Polyhedron 6:641–643

    Article  Google Scholar 

  39. Dennis CR, Potgieter IM, Basson SS (2010) A kinetic study of the reduction of the octacyanomolybdate(v) ion by the hydroxide ion. Reac Kinet Mech Cat 99:63–68

    CAS  Google Scholar 

  40. Dennis CR, Potgieter IM, Basson SS (2011) A kinetic study of the oxidation of formaldehyde by the octacyanomolybdate(V) ion in aqueous alkaline medium. Reac Kinet Mech Cat 104:1–7

    Article  Google Scholar 

  41. Dennis CR, Potgieter IM, Langner EHG, Fourie E, Swarts JC (2019) The oxidation of acetaldehyde by the octacyanomolybdate(V) ion in an aqueous alkaline medium. Transit Met Chem 44:161–165

    Article  CAS  Google Scholar 

  42. Lamprecht GJ, Leipoldt JG, Dennis CR, Basson SS (1980) Kinetics of the octacyanomolybdate(V) Ion oxidation of thiosulphate. React Kinet Catal Lett 13:269–275

    Article  CAS  Google Scholar 

  43. Dennis CR, Leipoldt JG, Basson SS, Lamprecht GJ (1985) The oxidation of thiosulphate ions by octacyanotungstate(V) in weak acidic medium. Polyhedron 4:1612–1624

    Article  Google Scholar 

  44. Dennis CR, Basson SS (1997) The oxidation of octacyanomolybdate(IV) and octacyanotungstate(IV) by nitrous acid. Polyhedron 16:3857–3860

    Article  CAS  Google Scholar 

  45. Basson SS, Bok LDC, Grobler SR (1974) Titrimetric and potentiometric determination of aqueous sulphide by octacyanomolybdate(V) and -tungstate(V) ions. Z Anorg Anal Chem 268:287–288

    Article  CAS  Google Scholar 

  46. Vogel AI (1951) Quantitative chemical analysis including elementary instrumental analysis, 2nd edn. Longman, London, p 318

    Google Scholar 

  47. Gray GW, Spence JT (1971) Photochemical reduction of octacyanomolybdate(V) in aqueous solution. Inorg Chem 10:2751–2755

    Article  CAS  Google Scholar 

  48. https://www.britanica.com/science/chemical-association. Accessed 14 December 2021

  49. Allen M, Lippard JJ (1970) Reaction of eight-coordinate metal cyanide complexes. II. Interaction of octacyanomolybdate(IV) with uranyl salts. Inorg Chem 9:991–993

    Article  CAS  Google Scholar 

  50. Lente G (2015) Deterministic kinetics in chemistry and systems biology. Springer Briefs Mol Sci. https://doi.org/10.1007/978-3-319-15482-4_3

    Article  Google Scholar 

  51. “Scientist” software, version 2, MicroMath, Saint Louis, Missouri, USA

  52. Wilkins RG (1991) The study of kinetics and mechanism of transition metal complexes, 2nd edn. Allyn and Bacon, Boston, p p8

    Book  Google Scholar 

  53. Laidler KJ (1963) Reaction kinetics Vol 2: reactions in solutuons. Pergamon Press Ltd, London, p 20

    Google Scholar 

  54. Swarts JC, Aquino MAS, Han J, Lam KY, Sykes AG (1995) Kinetic studies on the reduction of the tyrosyl radical of the R2 subunit of E. coli ribonucleotide reductase. Biochim Biophys Acta 1247:215–224

    Article  PubMed  Google Scholar 

  55. Han J, Swarts JC, Sykes AG (1996) Kinetic studies on the hydrazine and phenyl hydrazine reductions of Escherichia coli R2 subunit of ribonucleotide reductase. Inorg Chem 35:4629–4634

    Article  CAS  Google Scholar 

  56. Rai D, Felmy AR, Ryan JL (1990) Uranium(IV) hydrolysis constants and solubility product of UO2.xH2O(am). Inorg Chem 29:260–264

    Article  CAS  Google Scholar 

  57. Fugiwara K, Yamana H, Fujii T, Moriyama H (2003) Determination of uranium(IV) hydrolysis contstants and solubility product of UO2.xH2O. Radiochim Acta 91:345–350

    Article  Google Scholar 

  58. Lente G, Fabien I, Poe J (2005) A common misconception about the Eyring equation. New J Chem 29:759–760

    Article  CAS  Google Scholar 

  59. Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Central Research Fund of the University of the Free State, Bloemfontein for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

GJvZ: Investigation. EF: Investigation, writing, editing. CRD: Investigation, writing, review, editing, project admin. SSB: Conceptualisation, review, editing, supervision. JCS: Conceptualisation, methodology, review, editing, project admin supervision.

Corresponding author

Correspondence to C. Robert Dennis.

Ethics declarations

Conflict of interest

The authors are not aware of any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 125 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robert Dennis, C., van Zyl, G.J., Fourie, E. et al. The oxidation of the uranium(IV)tetrachloride by the octacyanotungstate(V) and the octacyanomolybdate(V) ions in perchloric acid medium: A kinetic study. Reac Kinet Mech Cat 135, 2915–2927 (2022). https://doi.org/10.1007/s11144-022-02297-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-022-02297-5

Keywords

Navigation