Skip to main content
Log in

Phase stability of Ni–Al nanoparticles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The phase stability of Ni–Al clusters of nanometer size was studied by using the embedded atom model and Monte Carlo simulation techniques. For temperatures of 500 and 1000 K and for a range of compositions below 70 at.% Al, the equilibrium structures of the system were determined and compared with the bulk results. We found that the bulk NiAl (B2) and Ni3Al (L12) phases were stable phases in the nanoparticle system; however, for deviations from ideal composition, the analysis revealed that, because of the surface effect, the composition of the clusters was not uniform. There was a core region in which the structure was ordered, B2 or L12, with a composition very close to the ideal, and a chemically disordered mantle region that allocated the deviations from ideal stoichiometries; in this way, a larger phase field appeared, indicating trends similar to those found in experiments on nanocrystalline Ni–Al powder [S.K. Pabi and B.S. Murty, Mater. Sci. Eng. A214, 146 (1996)]. For concentrations between 37 and 51 at.% Al, an intermediate phase, similar to the tetragonal L10 martensite, appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Khadkikar, I.E. Locci, K. Vedula, and G.M. Michal, Metall. Transact. 24A, 83 (1993).

    Article  CAS  Google Scholar 

  2. I.M. Robertson and C.M. Wayman, Phil. Mag. A 48, 6299 (1983).

    Google Scholar 

  3. R.W. Siegel, Physics Today. Oct. 64 (1993).

  4. R.W. Siegel, Sci. Am., Dec. (1996).

  5. R.W. Siegel, Rev. Mater. Sci. 21, 559 (1991).

    Article  CAS  Google Scholar 

  6. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    CAS  Google Scholar 

  7. H. Gleiter, Nanostruct. Mater. 1, 1 (1992).

    Article  CAS  Google Scholar 

  8. R.A. Andrievski, J. Mater. Sci. 29, 614 (1994).

    Article  CAS  Google Scholar 

  9. K.W. Liu, J.S. Zhang, J.G. Wang, and G.L. Chen, J. Mater. Res. 13, 1198 (1998).

    Article  CAS  Google Scholar 

  10. K. Aoki, X.M. Wang, A. Menezawa, and T. Masumoto, Mater. Sci. Eng. A179, 390 (1994).

    Article  CAS  Google Scholar 

  11. S.K. Pabi and B.S. Murty, Mater. Sci. Eng., A214, 146 (1996).

    Article  CAS  Google Scholar 

  12. C. Koch and Y.S. Cho. Nanostruct. Mater. 1, 207 (1992).

    Article  CAS  Google Scholar 

  13. G.F. Zhou, M.J. Zwanenburg, and H. Bakker. J. Appl. Phys. 78, 3438 (1995).

    Article  CAS  Google Scholar 

  14. M.S. Daw and M.I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  15. S.M. Foiles and M.S. Daw, J. Mater. Res. 2, 5 (1987).

    Article  CAS  Google Scholar 

  16. A.F. Voter and S.P. Chen, Mater. Res. Soc. Symp. Proc. 82, 175 (1987).

    Article  CAS  Google Scholar 

  17. Y. Mishin and D. Farkas. Phil. Mag. A 73, 169 (1997).

    Article  Google Scholar 

  18. D. Farkas, B. Mutasa, C. Vailhe, and K. Ternes, Model. Simulation Mater. Sci. Eng. 3, 201 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Debiaggi, S.R., Campillo, J.M. & Caro, A. Phase stability of Ni–Al nanoparticles. Journal of Materials Research 14, 2849–2854 (1999). https://doi.org/10.1557/JMR.1999.0380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0380

Navigation