Skip to main content
Log in

Structural analysis of Ni nanoparticles in thermal cooling by molecular dynamics

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The Sutton–Chen potential was used to simulate the process of solidification of Ni nanoparticles at temperatures ranging from 1000 to 100 K in the cooling process. The number of atoms per particle ranged from 500 to 4000. The results show an expected increase in solidification temperature with size. Analysis of the first-neighbour interatomic distance as a function of temperature showed exponential behaviour up to the phase transition. A reduction in the interatomic distance was observed at small sizes below the established lattice parameter. Characterization of the surface as a function of the number of first neighbours allowed interpretation and quantification of the surface planes as a function of particle size at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Lei D, Wangyu H, Huiqiu D and Shifang X 2010 J. Phys. Chem. C 114 11026

    Article  Google Scholar 

  2. Elena L, Alexander E, Daniel R, Irina B and Graeme M 2010 Comput. Mater. Sci. 47 712

    Article  Google Scholar 

  3. Aili W, Hengbo Y, Min R, Huihong L, Jinjuan X and Tingshung J 2010 New J. Chem. 34 708

    Article  Google Scholar 

  4. Yu M, Olga B and Maxim K 2011 Inorg. Mater. 47 36

    Article  Google Scholar 

  5. Yunjun R, Chundong W and Jianjun J 2016 J. Mater. Chem. A 4 14509

    Article  Google Scholar 

  6. Lucie G, He Z, Jean-François C, Dominique S, Fabio M and Olivier D 2015 Nano-Struct. Opt. Photonics 42 497

    Google Scholar 

  7. Mohammad R A, Vahhab S and Ali M 2020 Sci. Rep. 10 12627

    Article  Google Scholar 

  8. Yusuke W, Yasushi S and Toshio S 2010 ISIJ Int. 50 1158

    Article  Google Scholar 

  9. Shin-Pon J, I-Jui L and Hsing-Yin C 2020 J. Alloys Compd. 858 157681

  10. Yasushi S and Toshio S 200 J. Chem. Phys.129 144102

  11. Kien P and Hung K Hung 2019 Int. J. Mod. Phys.33 1950222

  12. Lin Z 2019 Adv. Eng. Mater. 21 1800531

    Article  Google Scholar 

  13. Michal K, Karolina J, Andrzej B and Aleksander B 2020 J. Appl. Cryst. 53 1

    Article  Google Scholar 

  14. Trong N, Chinh N and Vinh T 2017 RSC Adv. 7 25406

    Article  Google Scholar 

  15. Sutton A and Chen J 1990 Philos. Mag. Lett. 61 139

    Article  Google Scholar 

  16. Toshitaka I, Kenichi Y and Kunio A 2016 Nanomater. 6 172

    Article  Google Scholar 

  17. Yoshitaka K, Yue Q, Tahir C and William G 1998 CALTECH

  18. Marc H 2017 Phys. Chem. Chem. Phys. 19 5994

    Article  Google Scholar 

  19. Alarifi H, Atiş M, Özdoğan C, Hu A, Yavuz M and Zhou Y 2013 J. Phys. Chem. C 117 12289

    Article  CAS  Google Scholar 

  20. Yuwen Z, Yonghe D, Qingfeng Z, Dadong W, Heping Z, Ming G et al 2020 Chin. Phys. B 29 116601

    Article  Google Scholar 

  21. We-Bing Z, Chuan C and Shun-Ying Z 2013 J. Phys. Chem. C 117 21274

    Article  Google Scholar 

  22. Alexander M, Pavel S and Anna S 2017 Phys. Chem. Chem. Phys. 19 17895

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Agudelo-Giraldo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agudelo-Giraldo, J.D., Arias-Mateus, D.F., Gomez-Hermida, M.M. et al. Structural analysis of Ni nanoparticles in thermal cooling by molecular dynamics. Bull Mater Sci 46, 203 (2023). https://doi.org/10.1007/s12034-023-03037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03037-8

Keywords

Navigation