Skip to main content
Log in

Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu–Ni alloys as a model system

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A modified thermodynamic approach to describe melting in isolated nanoscale materials is suggested. The Gibbs free energy change of nanoscale alloy particles is modeled as a function of composition, temperature and nucleus and particle sizes. Cu–Ni has been chosen as a model system due to the availability of thermodynamic data within the high-temperature interval 1300–1600 K. For the first time, “melting loops” in the temperature–composition phase diagram were calculated for nanoparticle of 25 and 80 nm, respectively. It is shown that such loops represent the equilibrium two-phase solid–liquid states and do not coincide with the limiting solubility curves—the solidus and the liquidus. This new finding leads to the “melting loop” concept concerning phase diagrams of nanoscale alloys introduced in this paper. It is found that Cu–Ni nanoparticles can melt in different ways, whereas the dominant transition mechanism is surface-induced melting that initiates from the surface and then proceeds toward the core region. The decrease in size causes also a change of the melting temperature, the temperature width of the phase transition, the solubility limit, the concentration width of the melting loop as well as a change of the shape and slope of the equilibrium curves of the two-phase region of the phase diagram. As expected, when the size of the nanoscale particle increases, the solidus temperature increases and the size-dependent phase diagram approaches the bulk phase diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wilde G, Bunzel P, Roesner H, Weissmuller J (2007) Phase equilibria and phase diagrams of nanoscaled systems. J Alloys Compd 434:286–289. https://doi.org/10.1016/j.jallcom.2006.08.314

    Article  CAS  Google Scholar 

  2. Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, Jose-Yacaman M (2014) Gold–Copper nano-alloy tumbaga in the era of nano-: phase diagram and segregation. Nano Lett 14:6718–6726. https://doi.org/10.1021/nl503584q

    Article  CAS  Google Scholar 

  3. Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442. https://doi.org/10.1088/0957-4484/14/4/306

    Article  CAS  Google Scholar 

  4. Wautelet M (1992) Effects of size, shape and environment on the phase diagrams of small structures. Nanotechnology 3:42–43. https://doi.org/10.1088/0957-4484/3/1/008

    Article  Google Scholar 

  5. Park J, Lee J (2008) Phase diagram reassessment of Ag–Au system including size effect. Calphad 32:135–141. https://doi.org/10.1016/j.calphad.2007.07.004

    Article  CAS  Google Scholar 

  6. Liu XJ, Wang CP, Jiang JZ, Ohnuma I, Kainuma R, Ishida K (2005) Thermodynamic calculation of phase diagram and phase stability with nano-size particle. Int J Mod Phys B 19:2645–2650. https://doi.org/10.1142/S0217979205031468

    Article  CAS  Google Scholar 

  7. Tanaka T (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z METALLKD 92:1236–1241

    CAS  Google Scholar 

  8. Buffat Ph, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298. https://doi.org/10.1103/PhysRevA.13.2287

    Article  CAS  Google Scholar 

  9. Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607. https://doi.org/10.1007/s11665-014-0885-z

    Article  CAS  Google Scholar 

  10. Weissmueller J, Bunzel P, Wilde G (2004) Two-phase equilibrium in small alloy particles. Scr Mater 51:813–818. https://doi.org/10.1016/jscriptamat2004060

    Article  CAS  Google Scholar 

  11. Ulbricht H, Schmelzer J, Mahnke R, Schweitzer F (1988) Thermodynamics of finite systems and kinetics of first-order phase transitions. BSB Teubner, Leipzig. https://doi.org/10.1007/978-3-322-96427-4_3

  12. Shirinyan AS, Wautelet M (2004) Phase separation in nano-particles. Nanotechnology 15:1720–1731. https://doi.org/10.1088/0957-4484/15/12/004

    Article  CAS  Google Scholar 

  13. Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851–855

    Article  CAS  Google Scholar 

  14. Safaei A (2011) Cohesive energy and physical properties of nanocrystals. Philos Mag 91:1509–1539. https://doi.org/10.1080/14786435.2010.548836

    Article  CAS  Google Scholar 

  15. Shirinyan A (2015) Concept of size-dependent atomic interaction energies for solid nanomaterials:thermodynamic and diffusion aspects. Metallofiz Noveishie Tekhnol 37:475–486

    Article  CAS  Google Scholar 

  16. Shirinyan A, Bilogorodskyy Y (2012) Atom–atom interactions in continuous metallic nanofilms. Phys Met Metall 13:823–830. https://doi.org/10.1134/S0031918X12090116

    Article  Google Scholar 

  17. Kaptay G (2012) Nano-Calphad: extension of the Calphad method to systems with nano-phases and complexions. J Mater Sci 47:8320–8335. https://doi.org/10.1007/s10853-012-6772

    Article  CAS  Google Scholar 

  18. Shirinyan A, Wilde G, Bilogorodskyy Y (2018) Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision. J Mater Sci 53:2859–2879. https://doi.org/10.1007/s10853-017-1697-y

    Article  CAS  Google Scholar 

  19. Shirinyan AS, Gusak M (2004) Phase diagram of decomposing nano-alloys. Philos Mag A 84:579–593

    Article  CAS  Google Scholar 

  20. Shirinyan AS, Gusak AM, Wautelet M (2005) Phase diagram versus diagram of solubility: What is the difference for nano-systems? Acta Mater 53:5025–5032

    Article  CAS  Google Scholar 

  21. Jesser WA, Shneck RZ, Gille WW (2004) Solid–liquid equilibria in nano-particles of Pb–Bi alloys. Phys Rev B 69:144121. https://doi.org/10.1103/PhysRevB.69.144121

    Article  Google Scholar 

  22. Kofman R, Cheyssac P, Aouaj A, Lereah Y, Deutscher G, Ben-David T, Penisson J, Bourret A (1994) Surface melting enhanced by curvature effects. Surf Sci 303:231–246. https://doi.org/10.1016/0039-6028(94)90635-1

    Article  CAS  Google Scholar 

  23. Dai C, Saidi P, Song H, Yao Z, Daymond MR, Hoyt JJ (2017) A test of a phenomenological model of size dependent melting in Au nanoparticles. Acta Mater 136:11–20. https://doi.org/10.1016/j.actamat.2017.06.052

    Article  CAS  Google Scholar 

  24. Frenkenvan der Veen JWMJF (1985) Observation of surface melting. Phys Rev Lett 54:134–137. https://doi.org/10.1103/PhysRevLett.54.134

    Article  Google Scholar 

  25. Theis W, Horn K (1995) Surface premelting in Al(110) observed by core-level photoemission. Phys Rev B 51:7157–7159. https://doi.org/10.1103/PhysRevB.51.7157

    Article  CAS  Google Scholar 

  26. Ruan C-Y, Murooka Y, Raman RK, Murdick RA (2007) Dynamics of size selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7:1290–1296. https://doi.org/10.1021/nl070269h

    Article  CAS  Google Scholar 

  27. Fensin SJ, Olmsted D, Buta D, Asta M, Karma A, Hoyt JJ (2010) Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations. Phys Rev E 81:031601. https://doi.org/10.1103/PhysRevE.81.031601

    Article  CAS  Google Scholar 

  28. Barnett RN, Landman U (1991) Surface premelting of Cu(110). Phys Rev B 44:3226–3239. https://doi.org/10.1103/PhysRevB.44.3226

    Article  CAS  Google Scholar 

  29. Wang N, Rokhlin SI, Farson DF (2008) Nonhomogeneous surface premelting of Au nanoparticles. Nanotechnology 19:415701. https://doi.org/10.1088/0957-4484/19/41/415701

    Article  CAS  Google Scholar 

  30. Gusak AM, Kovalchuk AO, Straumal BB (2013) Interrelation of depletion and segregation in decomposition of nano-particles. Philos Mag A 93:1677–1689. https://doi.org/10.1080/14786435.2012.753481

    Article  CAS  Google Scholar 

  31. Shirinyan AS (2015) Two-phase equilibrium states in individual CuNi nano-particles: size, depletion and hysteresis effects. Beilstein J Nanotechnol 6:1811–1820

    Article  CAS  Google Scholar 

  32. Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA (2003) Carbon capacious Ni–Cu–Al2O3 catalysts for methane decomposition. Appl Catal A 247:51–63. https://doi.org/10.1016/S0926-860X(03)00080

    Article  CAS  Google Scholar 

  33. Huang SP, Balbuena PB (2002) Melting of bimetallic Cu–Ni Nano-clusters. J Phys Chem B 106:7225–7236

    Article  CAS  Google Scholar 

  34. Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, Jose-Yacaman M (2014) Cu–Ni nano-alloy: mixed, core–shell or Janus nano-particle? Nanoscale 6:14630–14635

    Article  CAS  Google Scholar 

  35. Sopousek J, Vrestal J, Pinkas J et al (2014) CuNi nano-alloy phase diagram Prediction and experiment. Calphad 45:33–39

    Article  CAS  Google Scholar 

  36. Li G, Wang Q, Liu T, Wang K, He J (2010) Molecular dynamics simulation of the melting and coalescence in the mixed Cu–Ni nano-clusters. J Cluster Sci 21:45–55. https://doi.org/10.1007/s10876-010-0281-2

    Article  CAS  Google Scholar 

  37. Shirinyan A, Wautelet M, Belogorodsky Y (2006) Solubility diagram of Cu–Ni nano-system. J Phys Condens Matter 18:2537–2551. https://doi.org/10.1088/0953-8984/18/8/016

    Article  CAS  Google Scholar 

  38. Guisbiers G, Mendoza-Perez R (2017) Comment on phase stability and segregation behavior of nickel-based nanoalloys based on theory and simulation. J Alloys Compd 723:1079–1081

    Article  CAS  Google Scholar 

  39. Steininger J (1970) Thermodynamics and calculation of the liquidus-solidus gap in homogenous monotonic alloy systems. J Appl Phys 41:2713–2724. https://doi.org/10.1063/1.1659286

    Article  CAS  Google Scholar 

  40. Mey S (1992) Thermodynamic re-assessment of the Cu–Ni system. Calphad 16:255–260. https://doi.org/10.1016/0364-5916(92)90022-P

    Article  Google Scholar 

  41. Matienseen W, Warlimont H (eds) (2005) Springer handbook of condensed matter and materials data. Springer, Berlin

    Google Scholar 

  42. Weast RC (eds) (1986–1987) CRC handbook of chemistry and physics, 67th edn. CRC Press, Inc Boca Raton, Florida

  43. Shackelford JF, Alexander W (eds) (2001) CRC material science and engineering handbook, 3rd edn. CRC Press, New York

    Google Scholar 

  44. Smithells CJ, Brandes EA (eds) (1976) Metal reference book, 5th edn. Fulmer Research Ltd Butterworth, London and Boston

    Google Scholar 

  45. Jiang Q, Lu HM, Zhao M (2004) Modelling of surface energies of elemental crystals. J Phys Condens Matter 16:521–530. https://doi.org/10.1088/0953-8984/16/4/001

    Article  CAS  Google Scholar 

  46. Magomedov MN (2004) Dependence of the surface energy on the size and shape of a nano-crystal. Phys Solid State 46:954–968

    Article  CAS  Google Scholar 

  47. Hashimoto R, Shibuta Y, Suzuki T (2011) Estimation of solid–liquid interfacial energy from Gibbs–Thomson effect: a molecular dynamics study. ISIJ Int 51:1664–1667

    Article  CAS  Google Scholar 

  48. Brillo J, Egry I, Giffard HS, Patti A (2004) Density and thermal expansion of liquid Au–Cu alloys. Int J Thermophys 25:1881–1888. https://doi.org/10.1007/s10765-004-7742-5

    Article  CAS  Google Scholar 

  49. Lohoefer G, Brillo J, Egry I (2004) Thermophysical properties of undercooled liquid CuNi alloys. Int J Thermophys 25:1535–1550. https://doi.org/10.1007/s10765-005-0011

    Article  CAS  Google Scholar 

  50. Xiao F, Yang R, Fang FL, Liu L, Zhao H (2008) Densities of molten Ni-(Cr Co, W) superalloys. Trans Nonferrous Met Soc China 18:24–27. https://doi.org/10.1016/S1003-6326(08)60005-9

    Article  CAS  Google Scholar 

  51. Xiao F, Liang F, Nogi K (2005) Surface tension and molten Ni and Ni-Co alloys. J Mater Sci Technol 21:201–206

    Article  CAS  Google Scholar 

  52. Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028

    Article  CAS  Google Scholar 

  53. Jian Z, Kuribayashi K, Jie W (2002) Solid-liquid interface energy of metals at melting point and undercooled state. Mater Trans 43:721–726. https://doi.org/10.2320/matertrans.43.721

    Article  CAS  Google Scholar 

  54. Tesfaye Firdu F, Taskinen P (2010) Densities of molten and solid alloys of (Fe, Cu, Ni, Co-S at Elevated Temperatures - Literature Review and Analysis, (Aalto University Publications in Materials Science and Engineering, Multiprint Oy, Espoo). https://doi.org/10.13140/2.1.2804.1282

  55. Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Limited & ASM International, Cambridge

    Book  Google Scholar 

  56. Kaptay G (2015) Partial surface tension of components of a solution. Langmuir 31:5796–5804

    Article  CAS  Google Scholar 

  57. Yeum KS, Speiser R, Poirier DR (1989) Estimation of the surface tensions of binary liquid alloys. Metall Trans B 20:693–703

    Article  Google Scholar 

  58. Mei QS, Lu K (2007) Melting and superheating of crystalline solids: From bulk to nano-crystals. Prog Mater Sci 52:1175–1262

    Article  CAS  Google Scholar 

  59. Dukarov S, Kryshtal A, Sukhov V (2015) Surface energy and wetting in island films. In: Aliofkhazraei M (eds) Wetting and Wettability. InTech, Rijeka, pp 169–206

  60. Schamp CT, Jesser WA (2006) Two-phase equilibrium in individual nano-particles of Bi–Sn. Metall Mater Trans A 37a:1825–1829

  61. Lee JG, Mori H, Yasuda H (2002) Alloy phase formation in nano-meter-sized particles in the In-Sn system. Phys Rev B 65:132106. https://doi.org/10.1103/PhysRevB65132106

    Article  Google Scholar 

  62. Nam HS, Hwang NM, Yu BD, Yoon JK (2002) Formation of an icosahedral structure during the freezing of gold nano-clusters: surface-induced mechanism. Phys Rev Lett. 89: 275502. https://doi.org/10.1103/PhysRevLett.89.275502

  63. Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nano-clusters. Phys Rev Lett 95:035501-1–035501-4. https://doi.org/10.1103/PhysRevLett.95.035501

    Article  CAS  Google Scholar 

  64. Baletto F, Ferrando R (2005) Structural properties of nano-clusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371–423

    Article  CAS  Google Scholar 

  65. Kim BJ, Tersoff J, Wen CY, Reuter MC, Stach EA, Ross FM (2009) Determination of size effects during the phase transition of a nanoscale Au–Si Eutectic. Phys Rev Lett 103:155701–155704. https://doi.org/10.1103/PhysRevLett.103.155701

    Article  CAS  Google Scholar 

  66. Christian JW (1965) Theory of transformation in metals and alloys. Pergamon Press, New York

    Google Scholar 

  67. Chen SL, Daniel S, Zhang F et al (2002) The PANDAT software package and its applications. Calphad 26:175–188. https://doi.org/10.1016/S0364-5916(02)00034

    Article  CAS  Google Scholar 

  68. Bale CW, Chartrand P, Degterov SA et al (2002) Fact Sage thermochemical software and databases. Calphad 26:189–228. https://doi.org/10.1016/jcalphad2016050

    Article  CAS  Google Scholar 

  69. Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. CALPHAD 26:229–271. https://doi.org/10.1016/S0364-5916(02)00036-6

    Article  CAS  Google Scholar 

  70. Gladgkikh MT (ed) (2004) Poverhnostnye javlenia I fazovye prevraschenia v condesirivanyh plenkah (Surface phenomena and phase transitions in condensed films). Kharkiv Karazin University, Kharkiv

    Google Scholar 

  71. Kelton KF (1991) Crystal nucleation in liquids and glasses. Solid State Phys 45:75–177. https://doi.org/10.1016/S0081-1947(08)60144-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DAAD (German Academic Exchange Service) for support of a German–Ukraine Projects (Ref. Codes 91730764 of Program 57440915 and 91617129 of Program 57210259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aram Shirinyan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Table 1.

Table 1 Thermodynamic data of the binary Cu–Ni nano-system used for the phase diagrams construction [56,57,58,59,60,61,62,63,64, 66,67,68, 70, 71]*

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirinyan, A., Wilde, G. & Bilogorodskyy, Y. Melting loops in the phase diagram of individual nanoscale alloy particles: completely miscible Cu–Ni alloys as a model system. J Mater Sci 55, 12385–12402 (2020). https://doi.org/10.1007/s10853-020-04812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04812-2

Navigation